NP-completeness

- Many many problems are NP-complete
- If you solve one of them efficiently, you solve all of them efficiently
- We don't know how to solve any of them efficiently

Approximation Algorithms

- So it's unlikely we'll solve one of these soon
 :(
- Instead of finding the best solution, we'll find a solution that is close :)

Traveling Salesman

Given: n cities with distances **Goal:** Compute shortest tour to visit them

Traveling Salesman

Given: n cities with distances **Goal:** Compute shortest tour to visit them

Metric TSP: distances satisfy triangle
inequality:
 distance(a,c) ≤ distance(a,b) + distance(b,c)

Idea: use MST! **Prove:** tour within factor 2 of best possible

MST tour: Show that it is within factor 2!

MST tour: Take the Euler tour of tree.

Claim: Every tour costs at least as much as MST.

Pf: Every tour contains a spanning tree

Claim: Euler tour costs at most 2 MST. **Pf**: Can carry out Euler tour using each edge at most 2 times.

Find smallest set of vertices touching every edge

Vertex Cover size 5

Greedy algorithms?

Include vertex that covers most new edges?

8

8

Each vertex on top row has one edge into each of the groups below.

Vertex Cover size 20

Greedy Rule: Pick vertex that covers the most edges Could pick B₁,...,B_n: nlog(n) vertices

n vertices each vertex has at most one edge into B_i

B_{n-1}

Bı

degree

n

Bn

B_i n/i vertices of degree i

Find smallest set of vertices touching every edge

Vertex Cover size 6

8

8

Greedy Rule: Pick uncovered edge, add its end points

Each vertex on top row has one edge into each of the groups below.

Greedy Rule: Pick uncovered edge, add its end points

Each vertex on top row has one edge into each of the groups below.

Greedy Rule: Pick uncovered edge, add its end points

Each vertex on top row has one edge into each of the groups below.

Vertex Cover size 16

Theorem: Size of greedy vertex cover is at most twice as big as size of optimal cover

Proof: Consider k edges picked.

Theorem: Size of greedy vertex cover is at most twice as big as size of optimal cover

Edges do not touch: every cover must pick one vertex per edge! Thus every vertex cover has k vertices.

Find smallest collection of sets containing every point

Set Cover size 4

Theorem: Greedy finds best cover upto a factor of ln(n).

greedy solution: 5 sets

greedy solution: 5 sets

optimal solution: 2 sets

greedy solution: log(n) sets

optimal solution: 2 sets

Theorem: If the best solution has k sets, greedy finds at most k ln(n) sets.

Pf: Suppose there is a set cover of size k.

Theorem: If the best solution has k sets, greedy finds at most k ln(n) sets.

Pf: Suppose there is a set cover of size k.

There is set that covers 1/k fraction of remaining elements, since there are k sets that cover all remaining elements. So in each step, algorithm will cover 1/k fraction of remaining elements.

Theorem: If the best solution has k sets, greedy finds at most k ln(n) sets.

Pf: Suppose there is a set cover of size k.

There is set that covers 1/k fraction of remaining elements, since there are k sets that cover all remaining elements. So in each step, algorithm will cover 1/k fraction of remaining elements.

#elements uncovered after t steps $\leq n(1-1/k)^t < ne^{-t/k}$. So after t = k ln (n) steps, number of uncovered elements < 1.