NP-completeness

- Many many problems are NP-complete
- If you solve one of them efficiently, you solve all of them efficiently
- We don't know how to solve any of them efficiently

Approximation Algorithms

- So it's unlikely we'll solve one of these soon :(
- Instead of finding the best solution, we'll find a solution that is close :)

Traveling Salesman

Given: n cities with distances
 Goal: Compute shortest tour to visit them

Traveling Salesman

Given: n cities with distances
Goal: Compute shortest tour to visit them

Metric TSP: distances satisfy triangle inequality:
distance $(\mathrm{a}, \mathrm{c}) \leq$ distance $(\mathrm{a}, \mathrm{b})+$ distance (b, c)
Idea: use MST!
Prove: tour within factor 2 of best possible

MST tour: Show that it is within factor 2 !

MST tour:Take the Euler tour of tree.

Claim: Every tour costs at least as much as
MST.
Pf: Every tour contains a spanning tree

Claim: Euler tour costs at most 2 MST. Pf: Can carry out Euler tour using each edge at most 2 times.

Vertex Cover

Find smallest set of
vertices touching
every edge

Vertex Cover

Find smallest set of
vertices touching
every edge

Vertex Cover

Find smallest set of
vertices touching
every edge

Vertex Cover

Find smallest set of
vertices touching
every edge

Vertex Cover

Find smallest set of
vertices touching
every edge

Vertex Cover

Find smallest set of vertices touching

Vertex Cover size 5 every edge

Greedy algorithms?

- Include vertex that covers most new edges?

Algorithm: Pick vertex that covers most new edges

Each vertex on top row has one 8 edge into each of the groups below.

Algorithm: Pick vertex that covers most new edges

Each vertex on top row has one 8 edge into each of the groups below.

Algorithm: Pick vertex that covers most new edges

Each vertex on top row has one
8 edge into each of the groups below.

Algorithm: Pick vertex that covers most new edges

Each vertex on top row has one
8 edge into each of the groups below.

Algorithm: Pick vertex that covers most new edges

Each vertex on top row has one
8 edge into each of the groups below.

Algorithm: Pick vertex that covers most new edges

Algorithm: Pick vertex that covers most new edges

Algorithm: Pick vertex that covers most new edges

Algorithm: Pick vertex that covers most new edges

Each vertex on top row has one
8 edge into each of the groups below.

Algorithm: Pick vertex that covers most new edges

Each vertex on top row has one 8 edge into each of the groups below.

Algorithm: Pick vertex that covers most new edges

Each vertex on top row has one 8 edge into each of the groups below.

Algorithm: Pick vertex that covers most new edges

Each vertex on top row has one 8 edge into each of the groups below.

Algorithm: Pick vertex that covers most new edges

$$
12 \bigcirc^{1} \bigcirc^{2} \bigcirc^{5} \bigcirc^{7} 8
$$

Each vertex on top row has one edge into each of the groups below.

Algorithm: Pick vertex that covers most new edges

Each vertex on top row has one edge into each of the groups below.

8
Vertex Cover size 20

Algorithm: Pick vertex that covers most new edges

Each vertex on top row has one edge into each of the groups below.

Optimal Vertex Cover size 8

Greedy Rule: Pick vertex that covers the most edges Could pick B_{1}, \ldots, B_{n} : nlog(n) vertices
n vertices each vertex has at most one edge into B_{i}

$B_{n} \quad B_{n-1}$
degree n

Greedy Rule:

Pick uncovered edge, add its end points

Find smallest set of
vertices touching
every edge

Greedy Rule:

Pick uncovered edge, add its end points

Find smallest set of
vertices touching
every edge

Greedy Rule:

Pick uncovered edge, add its end points

Find smallest set of vertices touching

Vertex Cover size 6

 every edge
Greedy Rule:

Pick uncovered edge, add its end points

Each vertex on top row has one edge into each of the groups below.

Greedy Rule:

Pick uncovered edge, add its end points

Each vertex on top row has one edge into each of the groups below.

Greedy Rule:

Pick uncovered edge, add its end points

Each vertex on top row has one edge into each of the groups below.

Greedy Rule:

Pick uncovered edge, add its end points

Each vertex on top row has one edge into each of the groups below.

Greedy Rule:

Pick uncovered edge, add its end points

Each vertex on top row has one edge into each of the groups below.

Greedy Rule:

Pick uncovered edge, add its end points

Each vertex on top row has one edge into each of the groups below.

8
Vertex Cover size 16

Theorem: Size of greedy vertex cover is at most twice as big as size of optimal cover

Proof: Consider k edges picked.

Theorem: Size of greedy vertex cover is at most twice as big as size of optimal cover

Proof: Consider k edges picked.

Edges do not touch: every cover must pick one vertex per edge! Thus every vertex cover has k vertices.

Set Cover

Find smallest
collection of sets
containing every point

Set Cover

Find smallest collection of sets

Set Cover size 4

 containing every point
Greedy Set Cover: Pick the set that maximizes \# new elements covered

Find smallest
collection of sets
containing every point

Greedy Set Cover: Pick the set that maximizes \# new elements covered

Find smallest
collection of sets
containing every point

Greedy Set Cover: Pick the set that maximizes \# new elements covered

Find smallest
collection of sets
containing every point

Greedy Set Cover: Pick the set that maximizes \# new elements covered

Find smallest
collection of sets
containing every point

Greedy Set Cover: Pick the set that maximizes \# new elements covered

Find smallest
collection of sets
containing every point

Greedy Set Cover: Pick the set that maximizes \# new elements covered

Theorem: Greedy finds best cover upto a factor of $\ln (n)$.

Greedy Set Cover: Pick the set that maximizes \# new elements covered

Greedy Set Cover: Pick the set that maximizes \# new elements covered

Greedy Set Cover: Pick the set that maximizes \# new elements covered

Greedy Set Cover: Pick the set that maximizes \# new elements covered

Greedy Set Cover: Pick the set that maximizes \# new elements covered

Greedy Set Cover: Pick the set that maximizes \# new elements covered
solution:
5 sets

Greedy Set Cover: Pick the set that maximizes \# new elements covered
greedy solution: 5 sets

optimal solution: 2 sets

Greedy Set Cover: Pick the set that maximizes \# new elements covered
greedy solution: $\log (n)$ sets

- ••••

\bigcirc
optimal solution: 2 sets

Greedy Set Cover: Pick the set that maximizes \# new elements covered

Theorem: If the best solution has k sets, greedy finds at most $k \ln (n)$ sets.

Pf:
Suppose there is a set cover of size k.

Greedy Set Cover: Pick the set that maximizes \# new elements covered

Theorem: If the best solution has k sets, greedy finds at most $k \ln (n)$ sets.

Pf:
Suppose there is a set cover of size k.
There is set that covers $1 / k$ fraction of remaining elements, since there are k sets that cover all remaining elements. So in each step, algorithm will cover $1 / k$ fraction of remaining elements.

Greedy Set Cover: Pick the set that maximizes \# new elements covered

Theorem: If the best solution has k sets, greedy finds at most $k \ln (n)$ sets.

Pf:
Suppose there is a set cover of size k.
There is set that covers $1 / k$ fraction of remaining elements, since there are k sets that cover all remaining elements. So in each step, algorithm will cover $1 / k$ fraction of remaining elements.
\#elements uncovered after t steps $\leq \mathrm{n}(1-1 / k)^{\mathrm{t}}<\mathrm{ne}^{-\mathrm{t} / \mathrm{k}}$. So after $t=k \ln (n)$ steps, number of uncovered elements < 1 .

