CSE421: Algorithms

Professor: Anup Rao (anuprao@cs)

Algorithms

- A recipe for mapping inputs to outputs efficiently
- Studied long before there were computers
- Eg: Gaussian elimination, gcd, multiplication
 ...
- How to design algorithms?
- How to analyze efficiency and prove correctness?

Algorithms: Why?

Physics is like sex: sure it may give some practical results, but that's not why we do it.

-Richard Feynman

Algorithms: Why?

Physics is like sex: sure it may give some practical results, but that's not why we do it.

-Richard Feynman

Skills you will learn:

- how to communicate your algorithms
- how to convince others that they work

Algorithms: Why?

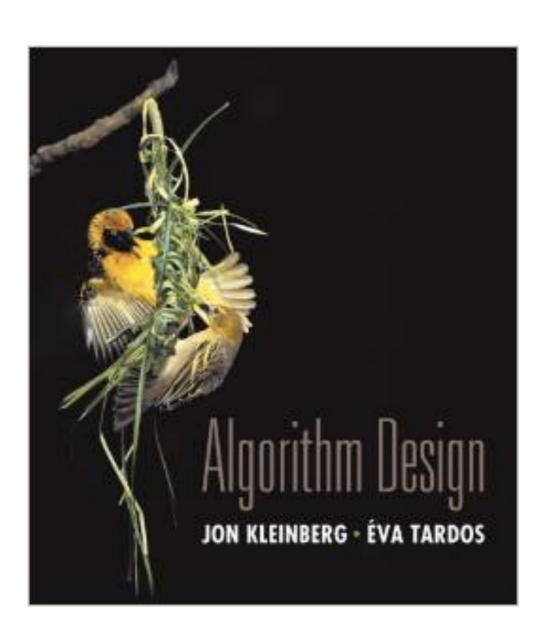
Goal: be able to

- Describe a correct algorithm
- Describe a correct algorithm that other people can implement
- Describe a correct algorithm that other people can implement and understand

Approximate Schedule

Weeks I-2: Introductions, asymptotics, some basic algorithms. Graphs, trees, connectivity, testing bipartiteness.

Weeks 3: Greedy algorithms for Interval Scheduling, Minimum Spanning Tree, Set Cover, Vertex Cover


Weeks 4-5: Divide and Conquer. Algorithms for Sorting, Selection, Closest, Multiplication. Midterm

Week 6: Dynamic Programming. Algorithms for Edit Distance, Longest Path, Knapsack.

Week 7: Flows and Cuts. Algorithms for Matching, Graph Partitioning.

Weeks 8-10: Linear programming, Randomized algorithms

Text Book

Everything you need to know will be in slides. Videos of lectures will be posted on website.

Evaluation

Final: 35%

- in class

Midterm: 25%

- in class

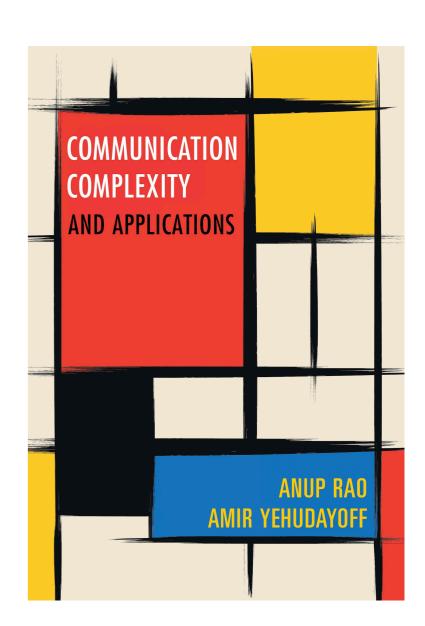
Homework every week: 40%

-You must write up solutions by yourself, but you can/should discuss homework with others.

Time Outside Class

Office Hours:

All office hours on zoom.


See website (https://
courses.cs.washington.edu/courses/
cse421/21au/schedule/) for schedule.

To get the most out of this class...

- Start working on the homework early, problems are often deceptively hard.
- Talk to {professor, TAs, students}.
 Brainstorming sessions really really help!

Anup's research: Communication Complexity

If two or more people need to compute a function that depends on all their inputs, how long does their conversation need to be?

A recent result

Thm: Suppose $A, B \subseteq \{0,1\}^n, X$ uniform in A, Y uniform in B. Then as long as $|A| \cdot |B| \ge 2^{1.01n}$, for any number k, $\Pr\left[\langle X, Y \rangle = k\right] \le O(1/\sqrt{n})$.