More Dynamic Programing

Common Subproblems

- Opt(i) Opt solution using x₁,...,x_i. (eg LIS, longest path).
- Opt(i,j) Opt solution using x_i,...,x_j. (eg RNA)
- Opt(i,j) Opt solution using x₁,...,x_i and y₁,...,y_j. (eg Edit distance)
- Opt(r) Opt solution using subtree rooted at r. (eg Vertex cover on trees).

Given: sequence of numbers

Goal: find longest increasing subsequence

```
41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90
```

Given: sequence of numbers

Goal: find longest increasing subsequence

```
41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90
```

longest increasing subsequence: length 9

Given: sequence of numbers $x_1,...,x_n$

Goal: find longest increasing subsequence

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90

Subproblems: I(j) - length of longest increasing subseq. ending at j.

Given: sequence of numbers $x_1,...,x_n$

Goal: find longest increasing subsequence

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90

Subproblems: I(j) - length of longest increasing subseq. ending at j.

Observation: if longest inc. sub. ending at j is $x_{i1}, x_{i2}, ..., x_i, x_j$ then I(j) = I(i)+1

Given: sequence of numbers $x_1,...,x_n$

Goal: find longest increasing subsequence

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90

Subproblems: I(j) - length of longest increasing subseq. ending at j.

Observation: if longest inc. sub. ending at j is $x_{i1}, x_{i2}, ..., x_i, x_j$ then I(j) = I(i)+1

Claim:
$$I(j) = \begin{cases} 1 & \text{if } x_i \ge x_j, \text{ for all } i < j \\ 1 + \max_{i: i < j, x_i < x_j} I(i) & \text{else} \end{cases}$$

Subproblems: I(j) - length of longest increasing subseq. ending at j.

Claim:
$$I(j) = \begin{cases} 1 & \text{if } x_i \ge x_j, \text{ for all } i < j \\ 1 + \max_{i: i < j, x_i < x_i} I(i) & \text{else} \end{cases}$$

Algorithm:

```
for j=1,...,n
   if x_i \ge x_j, for all i < j, set l(j) = 1 O(n^2)
   else, set l(j) = 1+max l(i)
output max l(j)
```

Running time

All pairs shortest path in directed graph with no negative cycles.

Given: directed graph, (possibly negative) edge weights

Goal: find shortest path between every two vertices

Bellman-Ford algorithm can do this in time O(n2m)

All pairs shortest path in directed graph with weighted edges

Given: directed graph, (possibly negative) edge weights

Goal: find shortest path between every two vertices

Subproblems: d(i,j,k) - length of shortest path that starts at i, ends at j and visits only {1,2,...,k} in the middle.

Goal: find shortest path between every two vertices

Subproblems: d(i,j,k) - length of shortest path that starts at i, ends at j and every other vertex on path is in {1,2,...,k}.

Goal: find shortest path between every two vertices

Subproblems: d(i,j,k) - length of shortest path that starts at i, ends at j and every other vertex on path is in $\{1,2,...,k\}$.

Subproblems: d(i,j,k) - length of shortest path that starts at i, ends at j and every other vertex on path is in {1,2,...,k}.

Observation:

if shortest path for d(i,j,k) does not visit k, then d(i,j,k) = d(i,j,k-1).

Otherwise,

$$d(i,j,k) = d(i,k,k-1) + d(k,j,k-1)$$

vertices
$$\{1,2,...,k-1\}$$
 vertices $\{1,2,...,k-1\}$

Subproblems: d(i,j,k) - length of shortest path that starts at i, ends at j and every other vertex on path is in {1,2,...,k}.

Claim: $d(i,j,k) = min\{d(i,j,k-1), d(i,k,k-1)+d(k,j,k-1)\}$

Algorithm:

```
for all i,j=1,...,n
    set d(i,j,0) = weight of edge (i,j)

for k=1,...,n
    for all i,j=1,...,n
    set d(i,j,k) = min{d(i,j,k-1),d(i,k,k-1)+d(k,j,k-1)}
```

Running time O(n³)

Traveling Salesperson Problem

Given: n cities, and the pairwise distances d_{ij}

Goal: find shortest tour that visits every city at least once

Traveling Salesperson Problem

Given: n cities, and the pairwise distances d_{ij}

Goal: find shortest tour that visits every city at least once

Brute force search algorithm: $n! \sim 2^{n\log n}$ time.

Traveling Salesperson Problem

Given: n cities, and the pairwise distances dij

Goal: find shortest tour that visits every city at least once

Brute force search: $n! \sim 2^{n\log n}$ time.

Subproblems: T(v,S) - length of shortest tour that visits all cities of the set S and ends at v.

Given: n cities, and the pairwise distances d_{ij}

Goal: find shortest tour that visits every city at least once

Subproblems: T(v,S) - length of shortest tour that visits all cities of the set S and ends at v.

Observation:

if shortest tour for T(v,S) visits city u right before v, then

$$T(v,S) = T(u,S-v) + d_{uv}$$

Given: n cities, and the pairwise distances d_{ij}

Goal: find shortest tour that visits every city at least once

Subproblems: T(v,S) - length of shortest tour that visits all cities of the set S and ends at v.

Algorithm:

```
for v=1,...,n

set T(v,\{v\}) = 0

for k=2,...,n

for all sets of cities S, |S|=k

for all v in S

set T(v,S) = \min_{u \text{ in } S-v} T(u,S-v)+d_{uv}
```

Running time O(n² 2ⁿ)

Given: A tree

Goal: find smallest vertex cover (vertices that touch all

edges)

Given: A tree

Goal: find smallest vertex cover (vertices that touch all edges)

Subproblems: V(r) - size of vertex cover at subtree rooted at r.

Subproblems: V(r) - size of vertex cover at subtree rooted at r.

Case 1: Cover realizing V(r) does not contain r. Then it must contain children(r).

V(r)= #children(r) + sum over grandchilren g V(g)

Case 2: Cover realizing V(r) does contain r. V(r) = 1+sum over children c V(c)

Subproblems: V(r) - size of vertex cover at subtree rooted at r.

Case 1: Cover realizing V(r) does not contain r. Then it must contain children(r).

V(r)= #children(r) + sum over grandchilren g V(g)

Case 2: Cover realizing V(r) does contain r.

V(r) = 1+sum over children c V(c)

Rough Algorithm:

Running time O(n)

For each vertex r, in decreasing order of depth, set

$$V(r) = min\{\#children(r) + \sum V(g), 1 + \sum V(c)\}$$

g, grandchild of r

c, child of r

Chain Matrix Multiplication

Given: n matrices M₁,M₂,...,M_n

Goal: compute product $M_1, M_2, ..., M_n$ (in what order should we multiply?)

Example: To compute VWXYZ we could multiply V((WX)(YZ)) or (V(W(XY)))Z or ...

Basic operations: multiplying (a by b) matrix with (b by c) matrix gives (a by c) matrix in abc time.

Chain Matrix Multiplication

Given: n matrices M₁,M₂,...,M_n

Goal: compute product M₁,M₂,...,M_n (in what order should we multiply?)

Example: To compute VWXYZ we could multiply V((WX)(YZ)) or (V(W(XY)))Z or ...

Basic operations: multiplying (a by b) matrix with (b by c) matrix gives (a by c) matrix in abc time.

Subproblems: C(i,j) - time to compute M_iM_{i+1}...M_j

Given: n matrices $M_1,...,M_n$, i'th matrix of size $(m_i by m_{i+1})$

Goal: compute product $M_1, M_2, ..., M_n$ (in what order should we multiply?)

Basic operations: multiplying (a by b) matrix with (b by c) matrix gives (a by c) matrix in abc time.

Subproblems: C(i,j) - time to compute M_iM_{i+1}...M_j

Observation: If the final multiplication in optimal solution is between $(M_i...M_k)(M_{k+1}...M_j)$, then $C(i,j) = C(i,k)+C(k,j)+n_in_{k+1}n_j$.

Basic operations: multiplying (a by b) matrix with (b by c) matrix gives (a by c) matrix in abc time.

Subproblems: C(i,j) - time to compute M_iM_{i+1}...M_j

Observation: If the final multiplication in optimal solution is between $(M_i...M_k)(M_{k+1}...M_j)$, then $C(i,j) = C(i,k)+C(k+1,j)+m_im_{k+1}m_i$.

Algorithm:

Running time

 $O(n^3)$

for
$$i=1,2,...,n-1$$
, set $C(i,i)=0$
for $s=1,2,...,n-1$, $i=1,...,n-1$
set $C(i,i+s)=\min_{i< k < s} C(i,k)+C(k+1,i+s)+m_im_{k+1}m_{i+s}$

Common Subproblems

- Opt(i) Opt solution using x₁,...,x_i. (eg LIS, longest path).
- Opt(i,j) Opt solution using x_i,...,x_j. (eg RNA)
- Opt(i,j) Opt solution using x₁,...,x_i and y₁,...,y_j. (eg Edit distance)
- Opt(r) Opt solution using subtree rooted at r. (eg Vertex cover on trees).