More Dynamic Programming
Common Subproblems

- Opt(i) - Opt solution using x_1,\ldots,x_i. (eg LIS, longest path).

- Opt(i,j) - Opt solution using x_i,\ldots,x_j. (eg RNA)

- Opt(i,j) - Opt solution using x_1,\ldots,x_i and y_1,\ldots,y_j. (eg Edit distance)

- Opt(r) - Opt solution using subtree rooted at r. (eg Vertex cover on trees).
Longest increasing subsequence

Given: sequence of numbers

Goal: find longest increasing subsequence

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90
Longest increasing subsequence

Given: sequence of numbers

Goal: find longest increasing subsequence

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90

longest increasing subsequence: length 9
Longest increasing subsequence

Given: sequence of numbers x_1, \ldots, x_n

Goal: find longest increasing subsequence

$41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90$

Subproblems: $l(j)$ - length of longest increasing subseq. ending at j.
Longest increasing subsequence

Given: sequence of numbers $x_1,..,x_n$

Goal: find longest increasing subsequence

Subproblems: $l(j)$ - length of longest increasing subseq. ending at j.

Observation: if longest inc. sub. ending at j is $x_{i1},x_{i2},...,x_i,x_j$ then $l(j) = l(i)+1$
Longest increasing subsequence

Given: sequence of numbers x_1, \ldots, x_n

Goal: find longest increasing subsequence

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90

Subproblems: $l(j)$ - length of longest increasing subseq. ending at j.

Observation: if longest inc. sub. ending at j is $x_{i_1}, x_{i_2}, \ldots, x_i, x_j$ then $l(j) = l(i) + 1$

Claim:

$$l(j) = \begin{cases} 1 & \text{if } x_i \geq x_j, \text{ for all } i < j \\ 1 + \max_{i: i < j, x_i < x_j} l(i) & \text{else} \end{cases}$$
Longest increasing subsequence

Subproblems: \(l(j) \) - length of longest increasing subseq. ending at \(j \).

Claim:

\[
l(j) = \begin{cases}
1 & \text{if } x_i \geq x_j, \text{ for all } i < j \\
1 + \max \ l(i) & \text{else}
\end{cases}
\]

Algorithm:

\[
\text{for } j = 1, \ldots, n \\
\quad \text{if } x_i \geq x_j, \text{ for all } i < j, \text{ set } l(j) = 1 \\
\quad \text{else, set } l(j) = 1 + \max \ l(i) \\
\text{output } \max \ l(j)
\]

Running time: \(O(n^2) \)
All pairs shortest path in directed graph with no negative cycles.

Given: directed graph, (possibly negative) edge weights

Goal: find shortest path between every two vertices

Bellman-Ford algorithm can do this in time $O(n^2m)$
All pairs shortest path in directed graph with weighted edges

Given: directed graph, (possibly negative) edge weights

Goal: find shortest path between every two vertices

Subproblems: $d(i,j,k)$ - length of shortest path that starts at i, ends at j and visits only $\{1,2,...,k\}$ in the middle.
Goal: find shortest path between every two vertices

Subproblems: $d(i,j,k)$ - length of shortest path that starts at i, ends at j and every other vertex on path is in $\{1,2,\ldots,k\}$.

vertices $\{1,2,\ldots,k\}$
Goal: find shortest path between every two vertices

Subproblems: $d(i,j,k)$ - length of shortest path that starts at i, ends at j and every other vertex on path is in \{1,2,...,k\}.
Subproblems: $d(i,j,k)$ - length of shortest path that starts at i, ends at j and every other vertex on path is in \{1,2,...,k\}.

Observation:
if shortest path for $d(i,j,k)$ does not visit k, then
\[
d(i,j,k) = d(i,j,k-1).
\]

Otherwise,
\[
d(i,j,k) = d(i,k,k-1) + d(k,j,k-1)
\]
Subproblems: $d(i,j,k)$ - length of shortest path that
starts at i, ends at j and every other vertex on path is in
\{1,2,...,k\}.

Claim: $d(i,j,k) = \min\{d(i,j,k-1), d(i,k,k-1)+d(k,j,k-1)\}$

Algorithm:

```plaintext
for all $i,j=1,...,n$
    set $d(i,j,0) = \text{weight of edge } (i,j)$

for $k=1,...,n$
    for all $i,j=1,...,n$
        set $d(i,j,k) = \min\{d(i,j,k-1),d(i,k,k-1)+d(k,j,k-1)\}$
```

Running time $O(n^3)$
Traveling Salesperson Problem

Given: n cities, and the pairwise distances d_{ij}

Goal: find shortest tour that visits every city at least once
Traveling Salesperson Problem

Given: n cities, and the pairwise distances d_{ij}

Goal: find shortest tour that visits every city at least once

Brute force search algorithm: $n! \sim 2^{n\log n}$ time.
Traveling Salesperson Problem

Given: n cities, and the pairwise distances d_{ij}

Goal: find shortest tour that visits every city at least once

Brute force search: $n! \sim 2^{n \log n}$ time.

Subproblems: $T(v,S)$ - length of shortest tour that visits all cities of the set S and ends at v.
Given: n cities, and the pairwise distances d_{ij}

Goal: find shortest tour that visits every city at least once

Subproblems: $T(v,S)$ - length of shortest tour that visits all cities of the set S and ends at v.

Observation: if shortest tour for $T(v,S)$ visits city u right before v, then

$$T(v,S) = T(u,S-v) + d_{uv}$$
Given: n cities, and the pairwise distances d_{ij}

Goal: find shortest tour that visits every city at least once

Subproblems: $T(v,S)$ - length of shortest tour that visits all cities of the set S and ends at v.

Algorithm:

```plaintext
for v=1,...,n
    set $T(v,\{v\}) = 0$
for k=2,...,n
    for all sets of cities S, $|S|=k$
        for all v in S
            set $T(v,S) = \min_{u \in S-v} T(u,S-v)+d_{uv}$
```

Running time $O(n^2 2^n)$
Vertex Cover on Acyclic Graphs

Given: A tree

Goal: find smallest vertex cover (vertices that touch all edges)
Vertex Cover on Acyclic Graphs

Given: A tree

Goal: find smallest vertex cover (vertices that touch all edges)

Subproblems: $V(r)$ - size of vertex cover at subtree rooted at r.

![Diagram of a tree with labeled vertices](image)
Vertex Cover on Acyclic Graphs

Subproblems: $V(r)$ - size of vertex cover at subtree rooted at r.

Case 1: Cover realizing $V(r)$ does not contain r. Then it must contain $\text{children}(r)$.

$V(r) = \#\text{children}(r) + \text{sum over grandchildren } g \cdot V(g)$

Case 2: Cover realizing $V(r)$ does contain r. $V(r) = 1 + \text{sum over children } c \cdot V(c)$
Vertex Cover on Acyclic Graphs

Subproblems: $V(r)$ - size of vertex cover at subtree rooted at r.

Case 1: Cover realizing $V(r)$ does not contain r. Then it must contain $\text{children}(r)$.

$$V(r) = \#\text{children}(r) + \sum \text{grandchildren } g \ V(g)$$

Case 2: Cover realizing $V(r)$ does contain r.

$$V(r) = 1 + \sum \text{children } c \ V(c)$$

Rough Algorithm:

$$V(r) = \min\{\#\text{children}(r) + \sum V(g), 1 + \sum V(c)\}$$

For each vertex r, in decreasing order of depth, set

Running time $O(n)$
Chain Matrix Multiplication

Given: n matrices $M_1, M_2, ..., M_n$

Goal: compute product $M_1, M_2, ..., M_n$ (in what order should we multiply?)

Example: To compute VWXYZ we could multiply $V((WX)(YZ))$ or $(V(W(XY)))Z$ or ...

Basic operations: multiplying (a by b) matrix with (b by c) matrix gives (a by c) matrix in abc time.
Chain Matrix Multiplication

Given: n matrices $M_1, M_2, ..., M_n$

Goal: compute product $M_1, M_2, ..., M_n$ (in what order should we multiply?)

Example: To compute VWXYZ we could multiply $V((WX)(YZ))$ or $(V(W(XY)))Z$ or ...

Basic operations: multiplying (a by b) matrix with (b by c) matrix gives (a by c) matrix in abc time.

Subproblems: $C(i,j)$ - time to compute $M_i M_{i+1} ... M_j$
Given: \(n \) matrices \(M_1, \ldots, M_n \), \(i \)'th matrix of size \((m_i \text{ by } m_{i+1}) \)

Goal: compute product \(M_1, M_2, \ldots, M_n \) (in what order should we multiply?)

Basic operations: multiplying \((a \text{ by } b)\) matrix with \((b \text{ by } c)\) matrix gives \((a \text{ by } c)\) matrix in \(abc\) time.

Subproblems: \(C(i,j) \) - time to compute \(M_i M_{i+1} \ldots M_j \)

Observation: If the final multiplication in optimal solution is between \((M_i \ldots M_k)(M_{k+1} \ldots M_j)\), then
\[
C(i,j) = C(i,k) + C(k,j) + n_i n_{k+1} n_j.
\]
Basic operations: multiplying (a by b) matrix with (b by c) matrix gives (a by c) matrix in abc time.

Subproblems: $C(i,j)$ - time to compute $M_i M_{i+1} \ldots M_j$

Observation: If the final multiplication in optimal solution is between $(M_i \ldots M_k)(M_{k+1} \ldots M_j)$, then

$$C(i,j) = C(i,k) + C(k+1,j) + m_i m_{k+1} m_j .$$

Algorithm:

for $i=1,2,\ldots,n-1$, set $C(i,i)=0$

for $s=1,2,\ldots,n-1$, $i=1,\ldots,n-1$

set $C(i,i+s)=\min \ C(i,k)+C(k+1,i+s)+m_i m_{k+1} m_{i+s} \quad i<k<s$

Running time $O(n^3)$
Common Subproblems

- Opt(i) - Opt solution using \(x_1, \ldots, x_i \). (eg LIS, longest path).
- Opt(i,j) - Opt solution using \(x_i, \ldots, x_j \). (eg RNA)
- Opt(i,j) - Opt solution using \(x_1, \ldots, x_i \) and \(y_1, \ldots, y_j \). (eg Edit distance)
- Opt(r) - Opt solution using subtree rooted at \(r \). (eg Vertex cover on trees).