1. Given a sequence of integers \(x_1, \ldots, x_n\) (possibly including negative integers) and an interval of coordinates \(I = [i, j]\), write \(x_I\) to denote the sum \(\sum_{i \leq k \leq j} x_k\). Give a linear time algorithm to find the interval that maximizes \(x_I\).

Solution. Let \(OPT(j)\) denote \(\max_{i \leq j} \sum_i x_i\). In words, \(Opt(j)\) gives the optimal value of all intervals that end at \(j\). Our algorithm will compute \(Opt(j)\) for every choice of \(j\). Then final solution is then given by \(\max_j Opt(j)\).

To compute \(Opt(j)\) in terms of smaller \(j\), note that there are two cases. If the optimal interval ending at \(j\) includes only \(x_j\), then \(Opt(j) = x_j\). Otherwise, the optimal interval must include \(j-1\), which case we must have \(Opt(j) = Opt(j-1) + x_j\). So we always have

\[
Opt(j) = \max\{x_j, x_j + Opt(j-1)\}
\]

| **Input:** A sequence of integers |
| **Result:** Value of best interval |
| Set \(M\) to be an array of \(n\) elements; Set \(M[1] = x_1\); |
| **for** integer \(j\) **in** 2 **through** \(n\) **do** |
| | Set \(M[j] = \max\{x_j, x_j + M[j-1]\}\); |
| **end** |
| output \(\max_j M[j]\); |

Runtime: The algorithm goes through the sequence twice. So the algorithm has runtime \(O(n)\).

2. Given a sequence of characters \(c_1, \ldots, c_n\), we say that a subsequence is a *palindrome* if it reads the same forwards and backwards. For example, “a,b,a,c,a,b,a” is a palindrome. Give an \(O(n^2)\) time algorithm to find the longest palindrome subsequence in the input sequence \(c_1, \ldots, c_n\). For example, in the sequence \(c, l, m, a, l, f, d, c, a, f, m\), the longest palindrome subsequence is \(m, a, d, a, m\). HINT: For \(i < j\), let \(p(i, j)\) denote the length of the longest palindrome in \(x_i, \ldots, x_j\). Express \(p(i, j)\) in terms of \(p(i+1, j), p(i, j-1), p(i+1, j-1)\). Evaluate the values \(p(i, j)\) in order of increasing \(|i-j|\).

Solution. As in the hint, we shall express \(p(i, j)\) in terms of the optimal solution for smaller intervals.
There are a number of cases. If \(i = j \), then the solution has value 1, since \(c_i \) is a palindrome by itself. If \(i = j - 1 \) then the optimal solution is 1 if \(c_i \neq c_j \) and 2 if \(c_i = c_j \). If \(i < j - 1 \) and \(c_i = c_j \), then the optimal solution must match \(c_i \) to \(c_j \), so the optimal solution has value \(p(i, j) = p(i + 1, j - 1) + 2 \). If \(i < j - 1 \) and \(c_i \neq c_j \), then the optimal solution does not involve either \(c_i \) or \(c_j \) so it is equal to either \(p(i + 1, j) \) or \(p(i, j - 1) \).

We can compute the \(p(i, j) \) values in increasing value of \(|j - i| \). Putting all this together gives the algorithm, which computes the longest palindrome as \(P(i, j) \) for each interval \([i, j] \), and the length of the palindrome as \(p(i, j) \).

```
Input: A list \( c[1, \ldots, n] \) of characters.
Result: The longest palindrome subsequence of \( c \).
for \( j = 1 \) to \( n \) do 
  Set \( p(j, j) = 1 \), \( P(j, j) = c_j \);
end
for \( j = 2 \) to \( n \) do
  if \( c_j = c_{j-1} \) then
    Set \( p(j-1, j) = 2 \), \( P(j, j) = c_{j-1}c_j \);
  end
else
  Set \( p(j-1, j) = 1 \), \( P(j, j) = c_{j-1} \);
end
end
for \( k = 2 \) to \( n \) do
  for \( i = 1 \) to \( n - k \) do
    if \( c_i = c_{i+k} \) then
      Set \( p(i, i + k) = 2 + p(i + 1, i + k - 1) \);
      Set \( P(i, i + k) = c_iP(i + 1, i + k - 1)c_{i+k} \);
    end
else
  if \( p(i + 1, i + k) > p(i, i + k - 1) \) then
    Set \( p(i, i + k) = p(i + 1, i + k) \);
    Set \( P(i, i + k) = P(i + 1, i + k) \);
  end
else
  Set \( p(i, i + k) = p(i, i + k - 1) \);
  Set \( P(i, i + k) = P(i, i + k - 1) \);
end
end
end
return \( P(1, n) \);
```

Runtime: The algorithm’s runtime is proportional to the number of subproblems \(P(i, j) \), which is \(O(n^2) \).

3. You are given a rectangular piece of cloth with dimensions \(X \times Y \), where \(X \) and \(Y \) are positive
integers, and a list of \(n \) products that can be made using the cloth. For each product \(i \) you know that a rectangle of cloth of dimensions \(a_i \times b_i \) is needed and that the selling price of the product is \(c_i \). Assume the \(a_i, b_i \) and \(c_i \) are all positive integers. You have a machine that can cut any rectangular piece of cloth into two pieces either horizontally or vertically. Design an algorithm that runs in time that is polynomial in \(X, Y, n \) and determines the best return on the \(X \times Y \) piece of cloth, that is, a strategy for cutting the cloth so that the products made from the resulting pieces give the maximum sum of selling prices. You are free to make as many copies of a given product as you wish, or none, if desired.

Solution. The crux of this problem is to identify precisely which actions are available to the machine:

- Make a vertical cut
- Make a horizontal cut
- Do nothing (and sell the current item)

```plaintext
Input: Dimensions of cloth X,Y, and a list of item values and dimensions.
Result: Best possible value of the cloth

Let cut be an \( X \) by \( Y \) dimensional array with every entry initialized to 0.
for \( x \in [0, X-1] \) do
    for \( y \in [0, Y-1] \) do
        for \( x_{cut} \in [1, x-1] \) do
            cut[\( x, y \)] = max(cut[\( x, y \)], cut[\( x_{cut}, y \]) + cut[\( x-x_{cut}, y \)])
        end
        for \( y_{cut} \in [1, y-1] \) do
            cut[\( x, y \)] = max(cut[\( x, y \)], cut[\( x, y_{cut} \]) + cut[\( x, y-y_{cut} \)])
        end
        for item in Items do
            if item_dimensions == (\( x, y \)) then
                cut[\( x, y \)] = max(cut[\( x, y \)], item_value)
            end
        end
    end
end
return cut[\( X-1, Y-1 \)]

// Note: This does not actually retrieve the necessary cuts. The cuts could be retrieved by storing which actions are taken along the way, and storing those actions along side their corresponding values in cut.
```

Run time: The outer two loops lead to \(O(XY) \) iterations over the inner most piece, which does tries every possible vertical cut, horizontal cut, and item. The overall runtime is \(O(XY) \cdot O(X + Y + n) = O(XY(X + Y + n)) \).

Proof of correctness: We have to prove that \(OPT(x, y) = cut(x, y) \). Here, \(OPT \) refers to the optimum solution to the problem and \(cut \) refers to the solution returned by the above
algorithm. It is sufficient to prove

\[\text{OPT}(x, y) \geq \text{cut}(x, y) \]
\[\text{OPT}(x, y) \leq \text{cut}(x, y) \]

To prove equation (1), we use the fact that the solution returned by \(\text{cut}(x, y) \) is a feasible solution and hence \(\text{OPT}(x, y) \) can only do better, implying \(\text{OPT}(x, y) \geq \text{cut}(x, y) \).

We prove equation 2 by induction on the size of \(xy \).

Base Case: \((x, y) = (1, 1)\). It is clear here that \(\text{OPT}(1, 1) \) could be 0 or the maximum price given by a product of dimension 1 \(\times \) 1. In both cases, \(\text{OPT}(1, 1) = \text{cut}(1, 1) \).

Induction Hypothesis: \(\text{OPT}(x', y') \leq \text{cut}(x', y') \) \(\forall x' \leq x, y' \leq y \).

To prove: \(\text{OPT}(x + 1, y) \leq \text{cut}(x + 1, y) \). Let us consider the optimum solution. It is true that there exist an \(i \) such that the piece given by dimensions \((x + 1) \times y\) is cut horizontally or vertically. This says that \(\text{OPT}(x + 1, y) = \text{OPT}(i, y) + \text{OPT}(x + 1 - i, y) \) (when cut horizontally) or \(\text{OPT}(x + 1, y) = \text{OPT}(x + 1, i) + \text{OPT}(x + 1, y - i) \) (when cut vertically).

By induction hypothesis \(\text{OPT}(x', y') \leq \text{cut}(x', y') \) for all \(x' \leq x \) and \(y' \leq y \). This implies \(\text{OPT}(x + 1, y) \leq \text{cut}(x + 1, y) \). A similar argument would give \(\text{OPT}(x, y + 1) \leq \text{cut}(x, y + 1) \). This completes the proof.

4. Let \(G \) be an input graph to the max flow problem. Let \(A \) be a minimum \(s - t \) cut in the graph. Suppose we add 1 to the capacity of every edge in the graph. Is it necessarily true that \(A \) is still a minimum cut? If so, prove it, if not give a counterexample.

Solution: No, it is not true. This is because adding 1 increases the capacity of cuts that have more edges more than it increases the capacity of cuts with fewer edges. Concretely consider the graph on vertices \(s, a, b, c, t \) where the edges \((s, a), (s, b), (a, c), (b, c)\) all have capacity 1, and the edge \((c, t)\) has capacity 2. Then the min-cut has capacity 2, since all the edges can be filled to capacity to get a max-flow. On the other hand, if we add 1 to the capacity of ever edge, the cut \(A, B \) with \(A = \{s\} \), which used to have capacity 2, becomes of capacity 4. However the cut with \(B = \{t\} \) which used to have capacity 2 becomes of capacity 3, and this is the new min-cut. So, the first cut discussed above is a counterexample to the claim.