Each problem is worth 10 points:

1. Given two strings x_1, \ldots, x_m and y_1, \ldots, y_n, we want to calculate the length of the longest common substring, namely the largest k for which there are i, j such that $x_i x_{i+1} \ldots x_{i+k-1} = y_j y_{j+1} \ldots y_{j+k-1}$. Show how to do this in time $O(mn)$.

Solution. Denote $opt(i, j)$ as the longest common substrings that starts at x_i and y_j. Then we have the following rule:

$$
opt(i, j) = \begin{cases}
1 + opt(i + 1, j + 1) & \text{if } x_i = y_j \\
0 & \text{else.}
\end{cases}
$$

And the boundary conditions are

$$
opt(i, n) = \begin{cases}
1 & \text{if } x_i = y_n \\
0 & \text{else.}
\end{cases}
$$

$$
opt(m, j) = \begin{cases}
1 & \text{if } x_m = y_j \\
0 & \text{else.}
\end{cases}
$$

So we have the following algorithm:

```plaintext
Input: strings $x_1, \ldots, x_m$ and $y_1, \ldots, y_n$
Result: length of longest common strings
Initialize table OPT[m][n]
for $i=m,m-1,\ldots,1$ do
    for $j=n,n-1,\ldots,1$ do
        if $i == m$ or $j == n$ then
            $OPT[i][j] = (x_i == y_j)$
        end
        else if $x_i == y_j$ then
            $OPT[i][j] = 1 + OPT[i+1][j+1]$  
        end
        else
            $OPT[i][j] = 0$
        end
    end
end
return max($OPT[i][j]$)
```
2. You are a large corporation that wants to open a chain of stores along a highway. There are \(n \) possible locations, which are at mileposts \(m_1, \ldots, m_n \) on the highway. At each location \(m_i \), you may open one store, which will give you an expected profit of \(p_i \). However, if you open stores at \(m_i, m_j \), then these stores must be at least \(k \) miles apart (i.e. \(|m_i - m_j| \geq k \)). Give an efficient algorithm to find the optimal locations to open stores on input \(k, p_1, \ldots, p_n \) and \(m_1, \ldots, m_n \). (For full credit it is enough to calculate the maximum expected profit from the best solution).

Solution. First, observe that if every \(p_i < 0 \), then we open zero stores amounting to an expected profit of 0. Second, we can drop all locations \(i \) for which the expected profit \(p_i < 0 \). This is because dropping these locations will not change the value of the optimum expected profit; if the optimum set of locations contains one with negative expected profit, then we can remove that location to increase the overall profit. In what follows, the expected profits satisfy \(p_1 \geq 0, \ldots, p_n \geq 0 \).

We first sort according to the mileposts and they satisfy \(m_1 \leq m_2 \leq \ldots \leq m_n \). For every \(m_i \), let \(i^* \) be the index of the smallest \(m_j \) that is at least \(m_i + k \). In other words, \(i^* \) is the smallest element in \(\{ j \mid m_j \geq m_i + k \} \). If no such element exists, then we take \(i^* = n + 1 \). The pseudocode is given below.

```plaintext
Input: \( m_1, \ldots, m_n \) and \( k, p_1, \ldots, p_n \)
Result: Optimum expected profit

Set \( A[n+1] = 0 \) and \( A[n] = p_n \).
for \( i = n-1, n-2, \ldots, 1 \) do
    \[ A[i] = \max\{p_i + A[i^*], A[i+1]\}. \]
end
return \( A[1] \).
```

Runtime: First, it takes \(O(n \log n) \) time to sort the \(m_i \)'s and then compute \(i^* \) for each \(i = 1, 2, \ldots, n \). Second, it takes constant time to set each entry in \(A \), which amount to a total of \(O(n) \) time. Putting together these two observations, we can conclude that the running time is \(O(n \log n) \).

Proof of Correctness. We will prove it by induction on \(n \). Let \(OPT \) denote the optimal set of locations to open the stores. If \(n = 1 \), then the optimum is just choosing the only
location which the algorithm finds in the step where it assigns \(A[n] = p_n \). We now prove it for arbitrary \(n \) by considering two cases.

(a) \(m_1 \in OPT \): By the induction hypothesis, the algorithm will find the maximum expected profit in \(m_1, \ldots, m_n \). Since, \(p_1 + A[1^*] \) is considered, the algorithm will output the maximum expected profit correctly.

(b) \(m_1 \notin OPT \): By the induction hypothesis, the algorithm will find the maximum expected profit in \(m_2, \ldots, m_n \). Since \(A[2] \) is a candidate for the maximum, the algorithm will output the maximum expected profit correctly.

3. Suppose we are given a flow network, where instead of capacities on edges, each internal vertex has a capacity on the total flow that is allowed to pass through it. So for each vertex \(v \), there is a non-negative integer \(c_v \), and the flow must satisfy \(f^m(v) \leq c_v \). Each edge can carry an arbitrary amount of flow. Give a polynomial time algorithm to find the maximum flow in such a network. (Hint: try to convert the problem into a flow network of the type we are used to.)

Solution: The polynomial time algorithm will generate a new standard flow network \(G' \) as follows.

(a) \(G' \) has a start vertex \(s \) and a sink vertex \(t \).
(b) For every vertex \(u \) of \(G \) with capacity \(c \), \(G' \) has two vertices \(u_0, u_1 \), and an edge from \(u_0 \) to \(u_1 \) of capacity \(c \).
(c) For every edge \((s, u)\) in \(G \), we add an edge \((s, u_0)\) to \(G \) with infinite capacity.
(d) For every edge \((u, v)\) in \(G \) between intermediate vertices, we add an edge \((u_1, v_0)\) to \(G' \) of infinite capacity.
(e) For every edge \((v, t)\) in \(G \), add an edge \((v_1, t)\) to \(G' \) of infinite capacity.

The algorithm then finds the max-flow in \(G' \) using the polynomial time algorithm discussed in class.

To see that the algorithm is correct, we prove that there is a valid flow of value \(v \) in \(G \) if and only if there is a flow of value \(v \) in \(G' \). Suppose there is a flow of value \(v \) in \(G \). Obtain a flow in \(G' \) by setting the flow value for every edge \((u_1, v_0)\) to be the same as the flow on \((u, v)\) in \(G \), and the flow value for every edge \((s, u_0)\) to be the same as the flow on \((s, u)\) in \(G \), and the flow value for every edge \((v_1, t)\) to be the same as the value on \((v, t)\). Finally set the flow value on every edge \((u_0, u_1)\) to be the same as the total flow into the vertex \(u \). This flow in \(G' \) respects the capacities and has the same value as the flow in \(G \).

Suppose there is a flow of value \(v \) in \(G' \). Then we obtain a flow in \(G \) by setting the flow value of \((s, u)\) to be the same as the flow of \((s, u_0)\), the flow of \((u, v)\) to be the same as the flow on \((u_1, v_0)\) and the flow on \((v, t)\) to be the same as the flow on \((v_1, t)\). Once again, this gives a valid flow that respects the capacity constraints in \(G' \). Thus, the value of the maximum flow in \(G \) is the same as the maximum flow in \(G' \), and the algorithm is correct.

4. Draw out a maximum \(s - t \) flow for the graph below, and the corresponding residual graph \(G_f \). What is the minimum cut that corresponds to this max flow?
Solution. Original Graph:

Residual Graph:
Max $s - t$ flow:
Min-Cut: \{s, a, b, c\}, \{d, t\}. The capacity of the Min-Cut is 12, same as the max-flow.

Common Errors. (a) Not showing all parts of the flow graph.
(b) Tracing the min-cut incorrectly in the final residual graph.