
Linear Programming
A really very extremely big hammer

Given: a polytope
Find: the lowest point in the polytope

polytope

Given: a polytope
Find: the lowest point in the polytope

polytope

Given: a polytope
Find: the lowest point in the polytope

maximize

subject to

z1 + 2z3

2z1 − z2 + 3z3 ≤ 1
−z1 + z2 − z3 ≤ 5

polytope

Given: a polytope
Find: the lowest point in the polytope

maximize

subject to

z1 + 2z3

2z1 − z2 + 3z3 ≤ 1
−z1 + z2 − z3 ≤ 5

polytope

We have fast
algorithms for this!

Linear Algebra primer
, think of them as column vectors.a, x ∈ ℝn

a⊺x = a1x1 + … + anxn

The set of satisfying is a hyperplane.
x a⊺x = 0

a⊺x = 0

a⊺x ≤ 0

a⊺x ≤ b

Given: a polytope
Find: the lowest point in the polytope

Given: a polytope
Find: the lowest point in the polytope

A1x ≤ b1

A 5x
≤

b 5

A
3 x ≤

b
3

A
4 x

≤
b

4

A 2x
≤

b 2

Linear Algebra primer
, think of them as column vectors.a, x ∈ ℝn

a⊺x = a1x1 + … + anxn

Ax =

A1x
A2x
A3x

Amx

Given: a polytope
Find: the lowest point in the polytope

A1x ≤ b1

A 5x
≤

b 5

A
3 x ≤

b
3

A
4 x

≤
b

4

A 2x
≤

b 2

maximize

subject to

c⊺x

Ax ≤ b

 means

for all

Ax ≤ b
(Ax)i ≤ bi

i

c

Standard form

maximize

subject to

c⊺x

Ax ≤ b
x ≥ 0

Standard form

maximize

subject to

c⊺x

Ax ≤ b
x ≥ 0

maximize

subject to

z1 + 2z3

2z1 − z2 + 3z3 ≤ 1
−z1 + z2 − z3 ≤ 5

Standard form

maximize

subject to

c⊺x

Ax ≤ b
x ≥ 0

maximize

subject to

z1 + 2z3

2z1 − z2 + 3z3 ≤ 1
−z1 + z2 − z3 ≤ 5

maximize

subject to

(x1,a − x1,b) + 2(x3,a − x3,b)

2(x1,a − x1,b) − (x2,a − x2,b) + 3(x3,a − x3,b) ≤ 1
−(x1,a − x1,b) + (x2,a − x2,b) − (x3,a − x3,b) ≤ 5
x ≥ 0

Max Flow
Given: a flow network

maximize flow out of s

subject to

Respecting capacities and
conservation

Max Flow
Given: a flow network

maximize flow out of s

subject to

Respecting capacities and
conservation

maximize

subject to

∑
e out of s

xe

Max Flow
Given: a flow network

maximize flow out of s

subject to

Respecting capacities and
conservation

maximize

subject to

for all ,

∑
e out of s

xe

e
0 ≤ xe ≤ c(e)

Max Flow
Given: a flow network

maximize flow out of s

subject to

Respecting capacities and
conservation

maximize

subject to

for all ,

for all intermediate ,

∑
e out of s

xe

e
0 ≤ xe ≤ c(e)

v

∑
e out of v

xe = ∑
e into v

xe

maximize

subject to

for all ,

for all intermediate ,

∑
e out of s

xe

e
0 ≤ xe ≤ c(e)

v

∑
e out of v

xe = ∑
e into v

xe

maximize

subject to

c⊺x

Ax ≤ b
x ≥ 0

maximize

subject to

for all ,

for all intermediate ,

∑
e out of s

xe

e
0 ≤ xe ≤ c(e)

v

∑
e out of v

xe = ∑
e into v

xe 1. ce = {1 if e out of s
0 otherwise.

maximize

subject to

c⊺x

Ax ≤ b
x ≥ 0

maximize

subject to

for all ,

for all intermediate ,

∑
e out of s

xe

e
0 ≤ xe ≤ c(e)

v

∑
e out of v

xe = ∑
e into v

xe
1.

2.

ce = {1 if e out of s
0 otherwise.

u⊺x ≥ r ≡ (−u)⊺x ≤ − r

maximize

subject to

c⊺x

Ax ≤ b
x ≥ 0

maximize

subject to

for all ,

for all intermediate ,

∑
e out of s

xe

e
0 ≤ xe ≤ c(e)

v

∑
e out of v

xe = ∑
e into v

xe

1.

2.

3.

ce = {1 if e out of s
0 otherwise.

u⊺x ≥ r ≡ (−u)⊺x ≤ − r
u⊺x = r ≡ u⊺x ≤ r, u⊺x ≥ r

maximize

subject to

c⊺x

Ax ≤ b
x ≥ 0

maximize

subject to

for all ,

for all intermediate ,

∑
e out of s

xe

e
0 ≤ xe ≤ c(e)

v

∑
e out of v

xe = ∑
e into v

xe

1.

2.

3.

4. maximize minimize

ce = {1 if e out of s
0 otherwise.

u⊺x ≥ r ≡ (−u)⊺x ≤ − r
u⊺x = r ≡ u⊺x ≤ r, u⊺x ≥ r

c⊺x ≡ (−c)⊺x

maximize

subject to

c⊺x

Ax ≤ b
x ≥ 0

Shortest paths
Given: a directed graph

Find: shortest path from to s t

Shortest paths
Given: a directed graph

minimize

subject to

for all ,

,

,

,

for all ,

∑
e

xe

e
xe ≥ 0

∑
e out of s

xe − ∑
e in to s

xe = 1

∑
e in to t

xe − ∑
e out of t

xe = 1

v ≠ s, t

∑
e out of v

xe = ∑
e into v

xe

Find: shortest path from to s t

Claim: Length of the shortest path is

solution to program.

flow out of is 1s

flow into is 1t

conservation of flow

Shortest paths
Given: a directed graph

minimize

subject to

for all ,

,

,

,

for all ,

∑
e

xe

e
xe ≥ 0

∑
e out of s

xe − ∑
e in to s

xe = 1

∑
e in to t

xe − ∑
e out of t

xe = 1

v ≠ s, t

∑
e out of v

xe = ∑
e into v

xe

Find: shortest path from to s t

Claim: Length of the shortest path is

solution to program.

Proof sketch: Optimal solution must be a combination
of flows on shortest paths. Indeed, if there is a path
using edges with that is not a shortest path,
delete the flow on this path and reroute it on a shortest
path to get a better solution.

xe > 0

Vertex Cover
Given: an undirected graph

Find: smallest set of vertices touching

all edges

Vertex Cover
Given: an undirected graph minimize

subject to

for all ,

,

for all

∑
v

xv

v
0 ≤ xv ≤ 1

e = {u, v}
xu + xv ≥ 1

Find: smallest set of vertices touching

all edges

Vertex Cover
Given: an undirected graph

Want
 or xv = 0 xv = 1

Find: smallest set of vertices touching

all edges

minimize

subject to

for all ,

,

for all

∑
v

xv

v
0 ≤ xv ≤ 1

e = {u, v}
xu + xv ≥ 1

Vertex Cover
Given: an undirected graph

Want
 or xv = 0 xv = 1

1/2

There is a solution of value , even though
smallest vertex cover has size .

3/2
2

1/2

1/2

Find: smallest set of vertices touching

all edges

minimize

subject to

for all ,

,

for all

∑
v

xv

v
0 ≤ xv ≤ 1

e = {u, v}
xu + xv ≥ 1

Duality
maximize

subject to

x1 + 2x3

2x1 − x2 + 3x3 ≤ 1
−x1 + x2 − x3 ≤ 5
x ≥ 0

Duality
maximize

subject to

x1 + 2x3

2x1 − x2 + 3x3 ≤ 1
−x1 + x2 − x3 ≤ 5
x ≥ 0

Claim: Optimum
≤ 6

Duality

Claim: Optimum

Pf:

≤ 6
x1 + 2x3

= (2x1 − x2 + 3x3) + (−x1 + x2 − x3)
≤ 6

maximize

subject to

x1 + 2x3

2x1 − x2 + 3x3 ≤ 1
−x1 + x2 − x3 ≤ 5
x ≥ 0

Duality Claim: For all non-negative , if

then

opt

Pf:

a, b
2a − b ≥ 1
−a + b ≥ 0
3a − b ≥ 2

≤ a + 5b

x1 + 2x3
≤ a(2x1 − x2 + 3x3) + b(−x1 + x2 − x3)
≤ a + 5b .

Claim: Optimum

Pf:

≤ 6
x1 + 2x3

= (2x1 − x2 + 3x3) + (−x1 + x2 − x3)
≤ 6

a
b

maximize

subject to

x1 + 2x3

2x1 − x2 + 3x3 ≤ 1
−x1 + x2 − x3 ≤ 5
x ≥ 0

Duality

primal

dual

minimize

subject to

a + 5b

2a − b ≥ 1
−a + b ≥ 0
3a − b ≥ 2
a, b ≥ 0

a
b

maximize

subject to

x1 + 2x3

2x1 − x2 + 3x3 ≤ 1
−x1 + x2 − x3 ≤ 5
x ≥ 0

Claim: For all non-negative , if

then

opt

Pf:

a, b
2a − b ≥ 1
−a + b ≥ 0
3a − b ≥ 2

≤ a + 5b

x1 + 2x3
≤ a(2x1 − x2 + 3x3) + b(−x1 + x2 − x3)
≤ a + 5b .

Duality

primal

dual

maximize

subject to

−a − 5b

−2a + b ≤ − 1
a − b ≤ 0
−3a + b ≤ − 2
a, b ≥ 0

a
b

maximize

subject to

x1 + 2x3

2x1 − x2 + 3x3 ≤ 1
−x1 + x2 − x3 ≤ 5
x ≥ 0

Claim: For all non-negative , if

then

opt

Pf:

a, b
2a − b ≥ 1
−a + b ≥ 0
3a − b ≥ 2

≤ a + 5b

x1 + 2x3
≤ a(2x1 − x2 + 3x3) + b(−x1 + x2 − x3)
≤ a + 5b .

Duality

primal

dual

What is dual of dual?

a
b

maximize

subject to

x1 + 2x3

2x1 − x2 + 3x3 ≤ 1
−x1 + x2 − x3 ≤ 5
x ≥ 0
maximize

subject to

−a − 5b

−2a + b ≤ − 1
a − b ≤ 0
−3a + b ≤ − 2
a, b ≥ 0

Duality

primal

dual

What is dual of dual?

y1
y2
y3

minimize

subject to

−y1 − 2y3

−2y1 + y2 − 3y3 ≥ − 1
y1 − y2 + y3 ≥ − 5
y ≥ 0

a
b

maximize

subject to

x1 + 2x3

2x1 − x2 + 3x3 ≤ 1
−x1 + x2 − x3 ≤ 5
x ≥ 0
maximize

subject to

−a − 5b

−2a + b ≤ − 1
a − b ≤ 0
−3a + b ≤ − 2
a, b ≥ 0

Duality

primal

What is dual of dual?

equivalent to

maximize

subject to

x1 + 2x3

2x1 − x2 + 3x3 ≤ 1
−x1 + x2 − x3 ≤ 5
x ≥ 0

a
b

minimize

subject to

−y1 − 2y3

−2y1 + y2 − 3y3 ≥ − 1
y1 − y2 + y3 ≥ − 5
y ≥ 0

maximize

subject to

y1 + 2y3

2y1 − y2 + 3y3 ≤ 1
−y1 + y2 − y3 ≤ 5
y ≥ 0

dual
y1
y2
y3

maximize

subject to

−a − 5b

−2a + b ≤ − 1
a − b ≤ 0
−3a + b ≤ − 2
a, b ≥ 0

Duality

maximize

subject to

c⊺x

Ax ≤ b
x ≥ 0

minimize

subject to

b⊺y

A⊺y ≥ c
y ≥ 0

dualprimal

≡
maximize

subject to

(−b)⊺y

(−A)⊺y ≤ − c
y ≥ 0

dual

Duality

maximize

subject to

c⊺x

Ax ≤ b
x ≥ 0

minimize

subject to

b⊺y

A⊺y ≥ c
y ≥ 0

Thm: The dual of the dual is the primal.

dualprimal

≡
maximize

subject to

(−b)⊺y

(−A)⊺y ≤ − c
y ≥ 0

dual

Duality

maximize

subject to

c⊺x

Ax ≤ b
x ≥ 0

minimize

subject to

b⊺y

A⊺y ≥ c
y ≥ 0

Thm: The dual of the dual is the primal.

dualprimal

≡
maximize

subject to

(−b)⊺y

(−A)⊺y ≤ − c
y ≥ 0

dual

minimize

subject to

(−c)⊺x

((−A)⊺)⊺x ≥ − b
x ≥ 0

dual of dual

Duality

maximize

subject to

c⊺x

Ax ≤ b
x ≥ 0

minimize

subject to

b⊺y

A⊺y ≥ c
y ≥ 0

Thm: The dual of the dual is the primal.

dualprimal

≡
maximize

subject to

(−b)⊺y

(−A)⊺y ≤ − c
y ≥ 0

dual

minimize

subject to

(−c)⊺x

((−A)⊺)⊺x ≥ − b
x ≥ 0

dual of dual
maximize

subject to

c⊺x

Ax ≤ b
x ≥ 0

≡

Duality
minimize

subject to

b⊺y

A⊺y = c
y ≥ 0

Thm: The dual of the dual is the primal.

Thm: (Weak Duality) Every solution to primal is at most every
solution to dual.

dualprimal

maximize

subject to

c⊺x

Ax ≤ b
x ≥ 0

Duality
minimize

subject to

b⊺y

A⊺y = c
y ≥ 0

Thm: The dual of the dual is the primal.

Thm: (Weak Duality) Every solution to primal is at most every
solution to dual.

Thm: (Strong Duality) If primal has solution of finite value, then
value is equal to optimal solution of dual.

dualprimal

maximize

subject to

c⊺x

Ax ≤ b
x ≥ 0

Duality
maximize

subject to

c⊺x

Ax ≤ b
x ≥ 0

minimize

subject to

b⊺y

A⊺y ≤ c
y ≥ 0

Thm: (Strong Duality) If
primal has solution of finite
value, then value is equal to
optimal solution of dual.

c

−A1

−Ai −Aj

By physics:

There must be

.

If correspond to sides touching ,

.

Then

yi, yj ≥ 0
yiAi + yjAj = c

̂Ax = b̂ x
A⊺y = ̂A⊺ ̂y = c

b⊺y = b̂⊺ ̂y = (̂Ax)⊺y = x⊺ ̂A⊺ ̂y = x⊺c = c⊺x

dualprimal

Fact: A vertex is
point for which
of the inequalities
become tight.

n

Duality of Max flow
maximize

subject to

for all ,

for all intermediate ,

∑
e out of s

xe

e
0 ≤ xe ≤ c(e)

v

∑
e out of v

xe = ∑
e into v

xe

minimize

subject to

for all ,

for all ,

for all other ,

for all

c⊺a

e = (s, v)
ae + bv ≥ 1

e = (u, t)
ae − bu ≥ 0

e = (u, v)
ae − bu + bv ≥ 0

e
ae ≥ 0

Duality of Max flow
maximize

subject to

for all ,

for all intermediate ,

∑
e out of s

xe

e
0 ≤ xe ≤ c(e)

v

∑
e out of v

xe = ∑
e into v

xe

minimize

subject to

for all ,

for all

c⊺a

bs = 1,bt = 0

e = (u, v)
ae ≥ bu − bv

e
ae ≥ 0

≡

minimize

subject to

for all ,

for all ,

for all other ,

for all

c⊺a

e = (s, v)
ae + bv ≥ 1

e = (u, t)
ae − bu ≥ 0

e = (u, v)
ae − bu + bv ≥ 0

e
ae ≥ 0

minimize

subject to

for all ,

for all ,

for all other ,

for all

c⊺a

e = (s, v)
ae + bv ≤ 1

e = (u, t)
ae − bu ≤ 0

e = (u, v)
ae − bu + bv ≤ 0

e
ae ≥ 0

≡

minimize

subject to

for all ,

for all

c⊺a

bs = 1,bt = 0

e = (u, v)
ae ≥ bu − bv

e
ae ≥ 0

≡

minimize

subject to

for all ,

c⊺a

bs = 1,bt = 0

e = (u, v)
ae = max{0,bu − bv}

bs = 1

bt = 0

Claim: Opt is achieved with

 .

Pf: Take any solution and
move the extreme values

up/down. The solution only
improves.

1 ≥ bu ≥ 0

minimize

subject to

for all ,

c⊺a

bs = 1,bt = 0
0 ≤ bu ≤ 1

e = (u, v)
ae = max{0,bu − bv}

bs = 1

bt = 0

minimize

subject to

for all ,

c⊺a

bs = 1,bt = 0
0 ≤ bu ≤ 1

e = (u, v)
ae = max{0,bu − bv}

minimize

subject to

for all ,

c⊺a

bs = 1,bt = 0
0 ≤ bu ≤ 1

e = (u, v)
ae = max{0,bu − bv}

Claim: Opt is achieved with

 .

Pf: Pick
uniformly at random. If

, set ,
otherwise set it to . The

expected value of resulting
solution is the same as

original!

bu = 0/1
0 ≤ t ≤ 1

bu ≥ t bu = 1
0

bs = 1

bt = 0

minimize

subject to

for all ,

c⊺a

bs = 1,bt = 0
bu ∈ {0,1}

e = (u, v)
ae = max{0,bu − bv}

bu = 1

bv = 0

Min-Cut!

Duality of Shortest Path
minimize

subject to

for all ,

,

,

,

for all ,

∑
e

xe

e
xe ≥ 0

∑
e out of s

xe − ∑
e in to s

xe = 1

∑
e out of t

xe − ∑
e in to t

xe = − 1

v ≠ s, t

∑
e out of v

xe − ∑
e into v

xe = 0

Duality of Shortest Path
minimize

subject to

for all ,

,

,

,

for all ,

∑
e

xe

e
xe ≥ 0

∑
e out of s

xe − ∑
e in to s

xe = 1

∑
e out of t

xe − ∑
e in to t

xe = − 1

v ≠ s, t

∑
e out of v

xe − ∑
e into v

xe = 0

maximize

subject to

for all edges ,

as − at

e = (u, v)
au − av ≤ 1

dual

Duality of Shortest Path
minimize

subject to

for all ,

,

,

,

for all ,

∑
e

xe

e
xe ≥ 0

∑
e out of s

xe − ∑
e in to s

xe = 1

∑
e out of t

xe − ∑
e in to t

xe = − 1

v ≠ s, t

∑
e out of v

xe − ∑
e into v

xe = 0

s

t

dual

maximize

subject to

for all edges ,

as − at

e = (u, v)
au − av ≤ 1

Duality and zero-sum games
Two player zero-sum game:
an matrix

: payoff to row player, assuming row player uses
strategy , and column player uses strategy .

: payoff to column player.

Example: Chess

: specifies how white would move in every possible

board configuration.

: specifies how black would move.

m × n G

Gi,j
i j

−Gi,j

i

j

Gi,j = {
1 if white wins
−1 if black wins
0 stalemate

Randomized strategy:

probability distribution on row strategies

A column vector with

,

probability distribution on column strategies

,

expected payoff to row player

x
xi ≥ 0 ∑

i

xi = 1

yi ≥ 0 ∑
j

yj = 1

x⊺Gy

Who decides on their strategy first?
If row player commits to

Row player will get payoff

So, if row player has to play first:

If column player commits to

Row player will get payoff

So, if column player has to play first

x

min
y

x⊺Gy = min
j

(x⊺G)j

max
x

min
y

x⊺Gy

y

max
x

x⊺Gy = max
i

(Gy)i

min
y

max
x

x⊺Gy

Randomized strategy:

probability distribution on row strategies

A column vector with

,

probability distribution on column strategies

,

expected payoff to row player

x
xi ≥ 0 ∑

i

xi = 1

yi ≥ 0 ∑
j

yj = 1

x⊺Gy

 von-Neumann’s min-max Theorem
If row player commits to

Row player will get payoff

So, if row player has to play first:

If column player commits to

Row player will get payoff

So, if column player has to play first

x

min
y

x⊺Gy = min
j

(x⊺G)j

max
x

min
y

x⊺Gy

y

max
x

x⊺Gy = max
i

(Gy)i

min
y

max
x

x⊺Gy

Doesn’t matter who plays first:

Thm:
.max

x
min

y
x⊺Gy = min

y
max

x
x⊺Gy

Using strong duality
Thm: .max

x
min

y
x⊺Gy = min

y
max

x
x⊺Gy

maximize

subject to

for all ,

z

x1 + … + xm = 1

j
z ≤ (x⊺G)j

x ≥ 0

 max
x

min
j

(x⊺G)j = min
y

max
i

(Gy)i

minimize

subject to

for all ,

w

y1 + … + ym = 1

i
w ≥ (Gy)i

y ≥ 0

w

yj

coefficient of must be z 1

coefficient of must be xi ≥ 0

primal dual

Algorithms for Linear programs

Simplex Algorithm

Simple

Often fast in practice

Not polynomial time (on pathological counterexamples)

Ellipsoid Algorithm

More complicated

Polynomial time, but not always fast

Simplex

Start with a vertex 
In each step,

move to a lower vertex

Problem: Number of vertices
on this path can be
exponential!

Simplex: how to find initial vertex?

maximize

subject to

c⊺x

Ax ≤ b
x ≥ 0

minimize

subject to

z1 + z2 + …

Ax ≤ b + z
x, z ≥ 0

For this program, is
a vertex. Run simplex to find a solution with

. The value of solution will be a a vertex
of original program!

zi = max{0, − bi}, x = 0

z = 0 x

Simplex: how to go to better vertex?

maximize

subject to

c⊺x

Ax ≤ b
x ≥ 0

1. There must be .

2. Find satisfying of
the equations, .

3. Change , until
some new equation
becomes tight.

̂Ax = b̂
y n − 1

c⊺y > 0
x = x + ϵy

Ellipsoid method
Ellipsoid: a squished ball

x2 + y2 ≤ 1
0

Ellipsoid method
Ellipsoid: a squished ball

0

(2x)2 + (y/2)2 ≤ 1

x2 + y2 ≤ 1

Ellipsoid method
Ellipsoid: a squished ball

0

(2x)2 + (y/2)2 ≤ 1

x2 + y2 ≤ 1

Ellipsoid method
Ellipsoid: a squished ball

0

(2x)2 + (y/2)2 ≤ 1

x2 + y2 ≤ 1

Ratio of area of ellipsoid to sphere:

1
2

⋅
2
1

= 1

Ellipsoid method
Ellipsoid: a squished ball

0

(2(x − 1))2 + ((y − 1)/2)2 ≤ 1

(1,1)

x2 + y2 ≤ 1

(2x)2 + (y/2)2 ≤ 1

Ratio of area of ellipsoid to sphere:

1
2

⋅
2
1

= 1

Ellipsoid method
Ellipsoid: a squished ball

0

(2(U1(x, y) − 1))2 + ((U2(x, y) − 1)/2)2 ≤ 1

(U1(x, y))2 + (U2(x, y))2 ≤ 1

(2U1(x, y))2 + (U2(x, y)/2)2 ≤ 1

Ratio of area of ellipsoid to sphere:

1
2

⋅
2
1

= 1

Let be the linear transformation

corresponding to a rotation.
U−1

The desired solution is bounded
Fact: If the solution is finite, then its magnitude is at most

.2O(𝗉𝗈𝗅𝗒(input length))

Fact: If there is finite solution, then volume of feasible region (i.e.
polytope) is at least .2−O(𝗉𝗈𝗅𝗒(input length))

Pf: If finite, the solution occurs at a vertex. Since every
vertex satisfies , for some , we have ,
and the size of coefficients of are polynomially related
to the size of coefficients of .

Bx = d B, d x = B−1d
B−1

A

Pf sketch: The smallest angle that can be generated is
.2−O(𝗉𝗈𝗅𝗒(input length))

Ellipsoid method

maximize

subject to

c⊺x

Ax ≤ b
x ≥ 0

Is there
with

x

c⊺x ≥ d
Ax ≤ b
x ≥ 0

Claim: If we can find inside
polytope in poly time, we can use
binary search to find the best
value of in poly time!

x

d

Fact: If the solution is finite,
then its magnitude is at
most .2O(𝗉𝗈𝗅𝗒(input length))

Fact: If there is finite
solution, then volume of
feasible region (i.e.
polytope) is at least

.2−O(𝗉𝗈𝗅𝗒(input length))

Consequence: We know

, where

.
−T ≤ c⊺x ≤ T
T ≤ 2O(𝗉𝗈𝗅𝗒(input length))

Using binary search

Check polytope is non-empty

Add new constraint

Find point

Add new constraint

Find point: polytope is empty!

Add new constraint

Add new constraint

Find point

Add new constraint

Find point: polytope is empty!

Find point

Conclusion: It is enough to give an
algorithm to find a point in a polytope.

Ellipsoid algorithm for finding points in polytopes

Idea: Iteratively find ellipsoids where the density of
the polytope is larger and larger, until a point is

found

Fact: If the solution is finite,
then its magnitude is at
most .2O(𝗉𝗈𝗅𝗒(input length))

Check 0

Find violated inequality

Shift inequality to origin

Find ellipsoid containing

half-sphere

Find ellipsoid containing

half-sphere

Shift to center

Stretch to get sphere

Check 0

Find violated inequality

Shift inequality to origin

Find ellipsoid containing

half-sphere

Find ellipsoid containing

half-sphere

Shift to center

Stretch to get sphere

Check 0

Ellipsoid method

Is there
with

x

c⊺x ≥ d
Ax ≤ b
x ≥ 0

Algorithm to find element of non-empty :
1. Let be circle of radius containing polytope .

2. If , output .

3. Otherwise half-circle containing , and ellipsoid
containing half-circle.

4. Scale and shift to get , and find element of
using new .

P
E R P

0 ∈ P 0
P E′￼

E′￼ E P
E

Corollary: 𝗏𝗈𝗅(P)/𝗏𝗈𝗅(E′￼) ≥ e
1

2(n + 1) ⋅ 𝗏𝗈𝗅(P)/𝗏𝗈𝗅(E)

Key Lemma: 𝗏𝗈𝗅(E′￼)/𝗏𝗈𝗅(E) ≤ e
−1

2(n + 1)

Corollary: After rounds, t
𝗏𝗈𝗅(P)/𝗏𝗈𝗅(E′￼) ≥ e

t
2(n + 1) ⋅ 𝗏𝗈𝗅(P)/𝗏𝗈𝗅(E)

Corollary: The algorithm must terminate in
 steps.𝗉𝗈𝗅𝗒(input length)

: E ∑
i

x2
i ≤ 1

: ellipsoid containing right half-ball
E′￼

(n + 1
n)

2

(x1 −
1

n + 1)
2

+
n2 − 1

n2
⋅ ∑

i>2

x2
i ≤ 1

If , , then

 .

x ∈ E x1 ≥ 0

(n + 1
n)

2

(x1 −
1

n + 1)
2

+
n2 − 1

n2
⋅ ∑

i>2

x2
i

= ((n + 1)x1 − 1
n)

2
+

n2 − 1
n2

⋅ ∑
i>2

x2
i

=
(n2 + 2n + 1)x2

1 − 2(n + 1)x1 + 1
n2

+
n2 − 1

n2
⋅ ∑

i>2

x2
i

=
(2n + 2)x2

1 − (2n + 2)x1

n2
+

1
n2

+
n2 − 1

n2
⋅ ∑

i

x2
i =

(2n + 2)x1(x1 − 1)
n2

+
1
n2

+
n2 − 1

n2
⋅ ∑

i

x2
i ≤

1
n2

+
n2 − 1

n2
≤ 1

using and 0 ≤ x1 ≤ 1 ∑
i

x2
i ≤ 1

Claim: contains right half-ball.E′￼

Claim: 𝗏𝗈𝗅(E′￼)/𝗏𝗈𝗅(E) ≤ e
−1

2(n + 1)

: E ∑
i

x2
i ≤ 1

:
E′￼

(n + 1
n)

2

(x1 −
1

n + 1)
2

+
n2 − 1

n2
⋅ ∑

i>2

x2
i ≤ 1

𝗏𝗈𝗅(E′￼)/𝗏𝗈𝗅(E)

=
n

n + 1
⋅ (n2

n2 − 1)
n−1

= (1 −
1

n + 1) ⋅ (1 +
1

n2 − 1)
(n−1)/2

≤ e− 1
n + 1 ⋅ e

(n − 1)/2
n2 − 1 = e− 1

n + 1 ⋅ e
1

2(n + 1) = e
−1

2(n + 1)

using 1 + z ≤ ez

Why is linear programming so powerful?

In a sense, every algorithm can be expressed as
linear program!

Boolean circuits

x1 x2 x3

x1 � x2 � x3

_

^ ^
^ ^

_

^
^

^

¬x1 ¬x2 ¬x3

Boolean circuits

x1 x2 x3

x1 � x2 � x3

_

^ ^
^ ^

_

^
^

^

¬x1 ¬x2 ¬x3

Fact: If can be computed in
time , then it can be computed by a circuit of
size

f : {0,1}n → {0,1}
T
O(T log T) .

Boolean circuits

x1 x2 x3

x1 � x2 � x3

_

^ ^
^ ^

_

^
^

^

¬x1 ¬x2 ¬x3

Fact: If can be computed in
time , then it can be computed by a circuit of
size

f : {0,1}n → {0,1}
T
O(T log T) .

^

x1 x2

xg

xg ≤ x1
xg ≤ x2

xg ≥ x1 + x2 − 1

_

<latexit sha1_base64="EClbQycrfqvOtFgb3BL3v31ZFcQ=">AAAB6XicbVBNS8NAEJ34WeNX1aOXxVLwYkmkoMeiF48V7Ae0pWy2k3bJJht2N4US+hcETxav/iGv/huTNgdtfTDweG+GmXleLLg2jvNtbW3v7O7tlw7sw6Pjk9Py2Xlby0QxbDEppOp6VKPgEbYMNwK7sUIaegI7XvCY+50pKs1l9GJmMQ5COo64zxk1udSfIg7LFafmLEE2iVuQChRoDstf/ZFkSYiRYYJqnZrEN3jjSRnM7Wo/0RhTFtAx9jIa0RD1IF1eOifVTBkRX6qsIkOWqv1rIqWh1rPQyzpDaiZ63cvF/7xeYvz7QcqjODEYsdUiPxHESJK/TUZcITNilhHKFDecETahijKThWNnEbjrD2+S9m3Nrdfqz/VK46EIowSXcAXX4MIdNOAJmtACBhN4hXdYWIH1Zi2sj1XrllXMXMAfWJ8/xKSNfQ==</latexit>

x1 x2

xg ≥ x1
xg ≥ x2

xg ≤ x1 + x2

xg

¬xg = 1 − xg

0 ≤ x ≤ 1

Boolean circuits

x1 x2 x3

x1 � x2 � x3

_

^ ^
^ ^

_

^
^

^

¬x1 ¬x2 ¬x3

Fact: If can be computed in
time , then it can be computed by a circuit of
size

f : {0,1}n → {0,1}
T
O(T log T) .

^

x1 x2

xg

xg ≤ x1
xg ≤ x2

xg ≥ x1 + x2 − 1

_

<latexit sha1_base64="EClbQycrfqvOtFgb3BL3v31ZFcQ=">AAAB6XicbVBNS8NAEJ34WeNX1aOXxVLwYkmkoMeiF48V7Ae0pWy2k3bJJht2N4US+hcETxav/iGv/huTNgdtfTDweG+GmXleLLg2jvNtbW3v7O7tlw7sw6Pjk9Py2Xlby0QxbDEppOp6VKPgEbYMNwK7sUIaegI7XvCY+50pKs1l9GJmMQ5COo64zxk1udSfIg7LFafmLEE2iVuQChRoDstf/ZFkSYiRYYJqnZrEN3jjSRnM7Wo/0RhTFtAx9jIa0RD1IF1eOifVTBkRX6qsIkOWqv1rIqWh1rPQyzpDaiZ63cvF/7xeYvz7QcqjODEYsdUiPxHESJK/TUZcITNilhHKFDecETahijKThWNnEbjrD2+S9m3Nrdfqz/VK46EIowSXcAXX4MIdNOAJmtACBhN4hXdYWIH1Zi2sj1XrllXMXMAfWJ8/xKSNfQ==</latexit>

x1 x2

xg ≥ x1
xg ≥ x2

xg ≤ x1 + x2

xg

¬xg = 1 − xg

0 ≤ x ≤ 1

Computing is
equivalent to
finding satisfying
these constraints!

f

x

