Linear Programming

A really very extremely big hammer

Given: a polytope
Find: the lowest point in the polytope

Given: a polytope
Find: the lowest point in the polytope

Given: a polytope
Find: the lowest point in the polytope

maximize $z_{1}+2 z_{3}$
subject to

$$
\begin{aligned}
& 2 z_{1}-z_{2}+3 z_{3} \leq 1 \\
& -z_{1}+z_{2}-z_{3} \leq 5
\end{aligned}
$$

Given: a polytope
Find: the lowest point in the polytope

We have fast algorithms for this!

maximize $z_{1}+2 z_{3}$
subject to
$2 z_{1}-z_{2}+3 z_{3} \leq 1$
$-z_{1}+z_{2}-z_{3} \leq 5$

Linear Algebra primer

$a, x \in \mathbb{R}^{n}$, think of them as column vectors.

$$
a^{\top} x=a_{1} x_{1}+\ldots+a_{n} x_{n}
$$

The set of x satisfying $a^{\top} x=0$ is a hyperplane.

Given: a polytope
Find: the lowest point in the polytope

Linear Algebra primer

$a, x \in \mathbb{R}^{n}$, think of them as column vectors.

$$
a^{\top} x=a_{1} x_{1}+\ldots+a_{n} x_{n}
$$

$$
A x=\quad \begin{aligned}
& A_{1} x \\
& A_{2} x \\
& A_{3} x
\end{aligned}
$$

$$
A_{m} x
$$

Given: a polytope
Find: the lowest point in the polytope
maximize $c^{\top} x$
subject to
$A x \leq b$
$A x \leq b$ means $(A x)_{i} \leq b_{i}$
for all i

Standard form

maximize $c^{\top} x$
subject to
$A x \leq b$
$x \geq 0$

Standard form

maximize $c^{\top} x$
subject to
$A x \leq b$
$x \geq 0$
maximize $z_{1}+2 z_{3}$
subject to

$$
\begin{aligned}
& 2 z_{1}-z_{2}+3 z_{3} \leq 1 \\
& -z_{1}+z_{2}-z_{3} \leq 5
\end{aligned}
$$

Standard form

maximize $c^{\top} x$
subject to
$A x \leq b$
$x \geq 0$
maximize $z_{1}+2 z_{3}$
subject to

$$
\begin{aligned}
& 2 z_{1}-z_{2}+3 z_{3} \leq 1 \\
& -z_{1}+z_{2}-z_{3} \leq 5
\end{aligned}
$$

maximize $\left(x_{1, a}-x_{1, b}\right)+2\left(x_{3, a}-x_{3, b}\right)$
subject to
$2\left(x_{1, a}-x_{1, b}\right)-\left(x_{2, a}-x_{2, b}\right)+3\left(x_{3, a}-x_{3, b}\right) \leq 1$
$-\left(x_{1, a}-x_{1, b}\right)+\left(x_{2, a}-x_{2, b}\right)-\left(x_{3, a}-x_{3, b}\right) \leq 5$
$x \geq 0$

Max Flow

Given: a flow network
maximize flow out of s
subject to
Respecting capacities and conservation

Max Flow

Given: a flow network
maximize flow out of s
subject to
Respecting capacities and conservation
maximize $\sum_{e \text { out of } s} x_{e}$
subject to

Max Flow

Given: a flow network
maximize flow out of s
subject to
Respecting capacities and conservation
maximize $\sum_{e \text { out of } s} x_{e}$
subject to
for all e,
$0 \leq x_{e} \leq c(e)$

Max Flow

Given: a flow network
maximize flow out of s
subject to
Respecting capacities and conservation

subject to
for all e,
$0 \leq x_{e} \leq c(e)$
for all intermediate v,

$$
\sum_{\text {out of } v} x_{e}=\sum_{e \text { into } v} x_{e}
$$

subject to

$$
\begin{aligned}
& \operatorname{maximize} c^{\top} x \\
& \text { subject to } \\
& A x \leq b \\
& x \geq 0
\end{aligned}
$$

for all e,
$0 \leq x_{e} \leq c(e)$
for all intermediate v,
$\sum_{e \text { out of } v} x_{e}=\sum_{e \text { into } v} x_{e}$

maximize $c^{\top} x$
 subject to

subject to

$$
\begin{aligned}
& A x \leq b \\
& x \geq 0
\end{aligned}
$$

for all e,
$0 \leq x_{e} \leq c(e)$
for all intermediate v,
$\sum_{e \text { out of } v} x_{e}=\sum_{e \text { into } v} x_{e}$

1. $c_{e}= \begin{cases}1 & \text { if } e \text { out of } s \\ 0 & \text { otherwise } .\end{cases}$

maximize $c^{\top} x$
 subject to

subject to

$$
\begin{aligned}
& A x \leq b \\
& x \geq 0
\end{aligned}
$$

for all e,
$0 \leq x_{e} \leq c(e)$ for all intermediate v,
$\sum_{\text {out of } v} x_{e}=\sum_{e \text { into } v} x_{e}$

1. $c_{e}= \begin{cases}1 & \text { if } e \text { out of } s \\ 0 & \text { otherwise. }\end{cases}$
2. $u^{\top} x \geq r \equiv(-u)^{\top} x \leq-r$

$\operatorname{maximize} \quad \sum x_{e}$
 e out of s

$$
\begin{aligned}
& \text { maximize } c^{\top} x \\
& \text { subject to } \\
& A x \leq b \\
& x \geq 0
\end{aligned}
$$

for all e,
$0 \leq x_{e} \leq c(e)$ for all intermediate v,
$\sum_{e \text { out of } v} x_{e}=\sum_{e \text { into } v} x_{e}$

1. $c_{e}= \begin{cases}1 & \text { if } e \text { out of } S \\ 0 & \text { otherwise. }\end{cases}$
2. $u^{\top} x \geq r \equiv(-u)^{\top} x \leq-r$
3. $u^{\top} x=r \equiv u^{\top} x \leq r, u^{\top} x \geq r$

maximize $c^{\top} x$
 subject to

subject to

$$
\begin{aligned}
& A x \leq b \\
& x \geq 0
\end{aligned}
$$

for all e,
$0 \leq x_{e} \leq c(e)$
for all intermediate v,
$\sum_{\text {out of } v} x_{e}=\sum_{e \text { into } v} x_{e}$

1. $c_{e}= \begin{cases}1 & \text { if } e \text { out of } S \\ 0 & \text { otherwise. }\end{cases}$
2. $u^{\top} x \geq r \equiv(-u)^{\top} x \leq-r$
3. $u^{\top} x=r \equiv u^{\top} x \leq r, u^{\top} x \geq r$
4. maximize $c^{\top} x \equiv \operatorname{minimize}(-c)^{\top} x$

Shortest paths

Given: a directed graph
Find: shortest path from s to t

Shortest paths

Given: a directed graph
Find: shortest path from s to t
Claim: Length of the shortest path is solution to program.
flow out of s is 1
flow into t is 1

minime $\sum \sum_{k}$
 e
 subject to

$$
\begin{aligned}
& \text { for all } e \\
& x_{e} \geq 0
\end{aligned}
$$

$$
\sum_{\text {nnor }} x_{i}-\sum_{\text {count }} x_{i}=1 .
$$

$$
\sum_{e \text { out of } v}^{\text {for all } v \neq s, t} x_{e}=\sum_{e \text { into } v} x_{e}
$$

Shortest paths

mimme subject to

Given: a directed graph
Find: shortest path from s to t
Claim: Length of the shortest path is solution to program.

Proof sketch: Optimal solution must be a combination of flows on shortest paths. Indeed, if there is a path using edges with $x_{e}>0$ that is not a shortest path, delete the flow on this path and reroute it on a shortest path to get a better solution.

$$
\begin{aligned}
& \text { for all } e, \\
& x_{e} \geq 0, \\
& \sum_{e \text { out of } s} x_{e}-\sum_{e \text { in to } s} x_{e}=1, \\
& \sum_{e \text { in to } t} x_{e}-\sum_{e \text { out of } t} x_{e}=1, \\
& \text { for all } v \neq s, t, \\
& \sum_{e \text { out of } v} x_{e}=\sum_{e \text { into } v} x_{e}
\end{aligned}
$$

Vertex Cover

Given: an undirected graph
Find: smallest set of vertices touching all edges

Vertex Cover

Given: an undirected graph
Find: smallest set of vertices touching all edges

minimize $\sum x_{v}$

subject to
for all v, $0 \leq x_{v} \leq 1$, for all $e=\{u, v\}$
$x_{u}+x_{v} \geq 1$

Vertex Cover

Given: an undirected graph

$$
\operatorname{minimize} \sum x_{v}
$$

Find: smallest set of vertices touching all edges
subject to

$$
\begin{aligned}
& \text { Want } \\
& x_{v}=0 \text { or } x_{v}=1
\end{aligned}
$$

$$
\text { for all } v \text {, }
$$

$$
0 \leq x_{v} \leq 1,
$$

$$
\begin{aligned}
& \text { for all } e=\{u, v\} \\
& x_{u}+x_{v} \geq 1
\end{aligned}
$$

Vertex Cover

Given: an undirected graph
Find: smallest set of vertices touching all edges

There is a solution of value $3 / 2$, even though smallest vertex cover has size 2 .

Want

$$
\begin{array}{ll}
x_{v}=0 \text { or } x_{v}=1 & 0 \leq x_{v} \leq 1 \\
& \text { for all } e=\{u, v\} \\
& x_{u}+x_{v} \geq 1
\end{array}
$$

Duality

maximize $x_{1}+2 x_{3}$
subject to
$2 x_{1}-x_{2}+3 x_{3} \leq 1$
$-x_{1}+x_{2}-x_{3} \leq 5$
$x \geq 0$

Duality

maximize $x_{1}+2 x_{3}$
subject to
$2 x_{1}-x_{2}+3 x_{3} \leq 1$
$-x_{1}+x_{2}-x_{3} \leq 5$
$x \geq 0$

Claim: Optimum ≤ 6

Duality

maximize $x_{1}+2 x_{3}$
subject to
$2 x_{1}-x_{2}+3 x_{3} \leq 1$
$-x_{1}+x_{2}-x_{3} \leq 5$
$x \geq 0$
Claim: Optimum ≤ 6 Pf: $x_{1}+2 x_{3}$
$=\left(2 x_{1}-x_{2}+3 x_{3}\right)+\left(-x_{1}+x_{2}-x_{3}\right)$
≤ 6

Duality

maximize $x_{1}+2 x_{3}$
subject to

$$
\begin{array}{ll}
a & 2 x_{1}-x_{2}+3 x_{3} \leq 1 \\
b & -x_{1}+x_{2}-x_{3} \leq 5 \\
& x \geq 0
\end{array}
$$

Claim: Optimum ≤ 6
Pf: $x_{1}+2 x_{3}$
$=\left(2 x_{1}-x_{2}+3 x_{3}\right)+\left(-x_{1}+x_{2}-x_{3}\right) \leq a+5 b$.
≤ 6

Claim: For all non-negative a, b, if
$2 a-b \geq 1$
$-a+b \geq 0$
$3 a-b \geq 2$
then
opt $\leq a+5 b$

Pf:

$x_{1}+2 x_{3}$
$\leq a\left(2 x_{1}-x_{2}+3 x_{3}\right)+b\left(-x_{1}+x_{2}-x_{3}\right)$

Duality

maximize $x_{1}+2 x_{3}$
subject to

$$
\begin{array}{ll}
a & 2 x_{1}-x_{2}+3 x_{3} \leq 1 \\
b & -x_{1}+x_{2}-x_{3} \leq 5 \\
& x \geq 0
\end{array}
$$

minimize $a+5 b$
subject to
$2 a-b \geq 1$
$-a+b \geq 0$
$3 a-b \geq 2$
$a, b \geq 0$

Claim: For all non-negative a, b, if

$$
\begin{aligned}
& 2 a-b \geq 1 \\
& -a+b \geq 0 \\
& 3 a-b \geq 2
\end{aligned}
$$

then

$$
\text { opt } \leq a+5 b
$$

Pf:

$$
x_{1}+2 x_{3}
$$

$$
\leq a\left(2 x_{1}-x_{2}+3 x_{3}\right)+b\left(-x_{1}+x_{2}-x_{3}\right)
$$

$$
\leq a+5 b
$$

Duality

maximize $x_{1}+2 x_{3}$
subject to

$$
\begin{array}{ll}
a & 2 x_{1}-x_{2}+3 x_{3} \leq 1 \\
b & -x_{1}+x_{2}-x_{3} \leq 5 \\
& x \geq 0
\end{array}
$$

maximize $-a-5 b$
subject to
$-2 a+b \leq-1$
$a-b \leq 0$
$-3 a+b \leq-2$
$a, b \geq 0$

Claim: For all non-negative a, b, if

$$
\begin{aligned}
& 2 a-b \geq 1 \\
& -a+b \geq 0 \\
& 3 a-b \geq 2
\end{aligned}
$$

then
opt $\leq a+5 b$

Pf:

$$
x_{1}+2 x_{3}
$$

$$
\begin{equation*}
\leq a\left(2 x_{1}-x_{2}+3 x_{3}\right)+b\left(-x_{1}+x_{2}-x_{3}\right) \tag{dual}
\end{equation*}
$$

Duality

maximize $x_{1}+2 x_{3}$
subject to
$2 x_{1}-x_{2}+3 x_{3} \leq 1$
$-x_{1}+x_{2}-x_{3} \leq 5$
$x \geq 0$
maximize $-a-5 b$
subject to
$-2 a+b \leq-1$
$a-b \leq 0$
$-3 a+b \leq-2$
$a, b \geq 0$

What is dual of dual?

Duality

maximize $x_{1}+2 x_{3}$
subject to

$$
\begin{array}{lll}
a & 2 x_{1}-x_{2}+3 x_{3} \leq 1 & \text { primal } \\
b & -x_{1}+x_{2}-x_{3} \leq 5 \\
& x \geq 0 \\
& \text { maximize }-a-5 b \\
& \text { subject to } \\
y_{1} & -2 a+b \leq-1 \\
y_{2} & a-b \leq 0 \\
y_{3} & -3 a+b \leq-2 \\
& a, b \geq 0
\end{array}
$$

$$
\begin{aligned}
& \operatorname{minimize}-y_{1}-2 y_{3} \\
& \text { subject to } \\
& -2 y_{1}+y_{2}-3 y_{3} \geq-1 \\
& y_{1}-y_{2}+y_{3} \geq-5 \\
& y \geq 0
\end{aligned}
$$

What is dual of dual?

Duality

maximize $x_{1}+2 x_{3}$
subject to
a $2 x_{1}-x_{2}+3 x_{3} \leq 1$
b $\quad-x_{1}+x_{2}-x_{3} \leq 5$
$x \geq 0$
maximize $-a-5 b$
subject to
$y_{1} \quad-2 a+b \leq-1$
$y_{2} \quad a-b \leq 0$
$y_{3} \quad-3 a+b \leq-2$
$a, b \geq 0$

What is dual of dual?
minimize $-y_{1}-2 y_{3}$
subject to
$-2 y_{1}+y_{2}-3 y_{3} \geq-1$
$y_{1}-y_{2}+y_{3} \geq-5$
$y \geq 0$
equivalent to
maximize $y_{1}+2 y_{3}$
subject to
$2 y_{1}-y_{2}+3 y_{3} \leq 1$
$-y_{1}+y_{2}-y_{3} \leq 5$
$y \geq 0$

Duality

primal
maximize $c^{\top} x$ subject to
$A x \leq b$
$x \geq 0$
dual
minimize $b^{\top} y$
subject to
$A^{\top} y \geq c$
$y \geq 0$

dual

maximize $(-b)^{\top} y$
subject to
$(-A)^{\top} y \leq-c$
$y \geq 0$

Duality

primal
maximize $c^{\top} x$ subject to

$$
\begin{aligned}
& A x \leq b \\
& x \geq 0
\end{aligned}
$$

dual
minimize $b^{\top} y$
subject to
$A^{\top} y \geq c$
$y \geq 0$

dual

maximize $(-b)^{\top} y$
subject to
$(-A)^{\top} y \leq-c$
$y \geq 0$

Thm: The dual of the dual is the primal.

Duality

primal
maximize $c^{\top} x$ subject to

$$
\begin{aligned}
& A x \leq b \\
& x \geq 0
\end{aligned}
$$

dual

minimize $b^{\top} y$ subject to
$A^{\top} y \geq c$
$y \geq 0$

dual

maximize $(-b)^{\top} y$
subject to
$(-A)^{\top} y \leq-c$
$y \geq 0$

Thm: The dual of the dual is the primal.

dual of dual

minimize $(-c)^{\top} x$
subject to
$\left((-A)^{\mathrm{T}}\right)^{\top} x \geq-b$
$x \geq 0$

Duality

primal

maximize $c^{\top} x$ subject to

$$
\begin{array}{ll}
A x \leq b & A^{\top} y \geq c \\
x \geq 0 & y \geq 0
\end{array}
$$

dual

minimize $b^{\top} y$ subject to

dual

maximize $(-b)^{\top} y$
subject to
$(-A)^{\top} y \leq-c$
$y \geq 0$

Thm: The dual of the dual is the primal.

dual of dual

minimize $(-c)^{\top} x \quad$ maximize $c^{\top} x$
subject to
subject to

$$
\begin{array}{lll}
\left((-A)^{\top}\right)^{\top} x \geq-b & \equiv & A x \leq b \\
x \geq 0 & & x \geq 0
\end{array}
$$

Duality

primal
maximize $c^{\top} x$
subject to

$$
\begin{aligned}
& A x \leq b \\
& x \geq 0
\end{aligned}
$$

dual
minimize $b^{\top} y$
subject to
$A^{\top} y=c$
$y \geq 0$

Thm: The dual of the dual is the primal.
Thm: (Weak Duality) Every solution to primal is at most every solution to dual.

Duality

primal
maximize $c^{\top} x$
subject to

$$
\begin{aligned}
& A x \leq b \\
& x \geq 0
\end{aligned}
$$

dual
minimize $b^{\top} y$
subject to
$A^{\top} y=c$
$y \geq 0$

Thm: The dual of the dual is the primal.
Thm: (Weak Duality) Every solution to primal is at most every solution to dual.

Thm: (Strong Duality) If primal has solution of finite value, then value is equal to optimal solution of dual.

Duality

primal maximize $c^{\top} x$ subject to $A x \leq b$ $x \geq 0$
dual minimize $b^{\top} y$ subject to $A^{\top} y \leq c$ $y \geq 0$

Thm: (Strong Duality) If

 primal has solution of finite value, then value is equal to optimal solution of dual.Fact: A vertex is point for which n of the inequalities become tight.

By physics:

There must be $y_{i}, y_{j} \geq 0$
$y_{i} A_{i}+y_{j} A_{j}=c$.
If $\hat{A} x=\hat{b}$ correspond to sides touching x,

$$
A^{\top} y=\hat{A}^{\top} \hat{y}=c .
$$

Then

$$
b^{\top} y=\hat{b}^{\top} \hat{y}=(\hat{A} x)^{\top} y=x^{\top} \hat{A}^{\top} \hat{y}=x^{\top} c=c^{\top} x
$$

Duality of Max flow

minimize $c^{\top} a$
maximize

Σ
 e Out of s

subject to
for all e,
$0 \leq x_{e} \leq c(e)$
for all intermediate v,
$\sum_{e \text { out of } v} x_{e}=\sum_{e \text { into } v} x_{e}$
subject to
for all $e=(s, v)$,
$a_{e}+b_{v} \geq 1$
for all $e=(u, t)$,
$a_{e}-b_{u} \geq 0$
for all other $e=(u, v)$,
$a_{e}-b_{u}+b_{v} \geq 0$
for all e
$a_{e} \geq 0$

Duality of Max flow

minimize $c^{\top} a$
minimize $c^{\top} a$
maximize
$a_{e} \geq 0$

$\sum_{e} x_{e}$

subject to
for all $e=(s, v)$,
$a_{e}+b_{v} \geq 1$
for all $e=(u, t), \quad \equiv \quad$ for all $e=(u, v)$,
$a_{e}-b_{u} \geq 0$
for all other $e=(u, v)$,
$a_{e}-b_{u}+b_{v} \geq 0$
for all e
$a_{e} \geq 0$
for all e
subject to
$b_{s}=1, b_{t}=0$
$a_{e} \geq b_{u}-b_{v}$
for all intermediate v,
$\sum_{e \text { out of } v} x_{e}=\sum_{e \text { into } v} x_{e}$
minimize $c^{\top} a$
minimize $c^{\top} a$
subject to
subject to

$$
h-1 h-0
$$

for all $e=(s, v)$,
$a_{e}+b_{v} \leq 1$
for all $e=(u, t)$,

$$
\equiv \quad \text { for all } e=(u, v)
$$

minimize $c^{\top} a$
subject to

$$
a_{e}-b_{u} \leq 0
$$

for all other $e=(u, v)$,

$$
a_{e} \geq b_{u}-b_{v}
$$

$$
a_{e}-b_{u}+b_{v} \leq 0
$$

for all e
for all e
$a_{e} \geq 0$
minimize $c^{\top} a$
subject to
$b_{s}=1, b_{t}=0$
$0 \leq b_{u} \leq 1$
for all $e=(u, v)$,
$a_{e}=\max \left\{0, b_{u}-b_{v}\right\}$

Claim: Opt is achieved with $1 \geq b_{u} \geq 0$.
Pf: Take any solution and move the extreme values up/down. The solution only improves.

minimize $c^{\top} a$
subject to
$b_{s}=1, b_{t}=0$
$0 \leq b_{u} \leq 1$
for all $e=(u, v)$,
$a_{e}=\max \left\{0, b_{u}-b_{v}\right\}$

minimize $c^{\top} a$
subject to

$$
b_{s}=1, b_{t}=0
$$

$0 \leq b_{u} \leq 1$
for all $e=(u, v)$,
$a_{e}=\max \left\{0, b_{u}-b_{v}\right\}$

Claim: Opt is achieved with $b_{u}=0 / 1$. Pf: Pick $0 \leq t \leq 1$ uniformly at random. If

$$
b_{u} \geq t, \text { set } b_{u}=1,
$$ otherwise set it to 0 . The expected value of resulting solution is the same as original!

minimize $c^{\top} a$
subject to
$b_{s}=1, b_{t}=0$
$b_{u} \in\{0,1\}$

Min-Cut!

for all $e=(u, v)$,
$a_{e}=\max \left\{0, b_{u}-b_{v}\right\}$

Duality of Shortest Path

minimize $\sum x_{e}$
subject to
for all e,
$x_{e} \geq 0$,
$\sum_{e \text { out of } s} x_{e}-\sum_{e \text { in to } s} x_{e}=1$,
$\sum_{e \text { out of } t} x_{e}-\sum_{e \text { in to } t} x_{e}=-1$,
for all $v \neq s, t$,
$\sum_{e \text { out of } v} x_{e}-\sum_{e \text { into } v} x_{e}=0$

Duality of Shortest Path

minimize $\sum x_{e}$

subject to
for all e,
$x_{e} \geq 0$,
$\sum_{e \text { out of } s} x_{e}-\sum_{e \text { in to } s} x_{e}=1$,

dual

$\sum_{e \text { out of } t} x_{e}-\sum_{e \text { in to } t} x_{e}=-1$,
for all $v \neq s, t$,
$\sum_{e \text { out of } v} x_{e}-\sum_{e \text { into } v} x_{e}=0$
maximize $a_{s}-a_{t}$
subject to
for all edges $e=(u, v)$,
$a_{u}-a_{v} \leq 1$

Duality of Shortest Path

 minimize $\sum x_{e}$subject to
for all e,
$x_{e} \geq 0$,
$\sum_{e \text { out of } s} x_{e}-\sum_{e \text { in to } s} x_{e}=1$,
maximize $a_{s}-a_{t}$
subject to
for all edges $e=(u, v)$,
$\sum_{e \text { out of } t} x_{e}-\sum_{e \text { in to } t} x_{e}=-1$,
for all $v \neq s, t$,
$\sum_{e \text { out of } v} x_{e}-\sum_{e \text { into } v} x_{e}=0$

Duality and zero-sum games

Two player zero-sum game:
an $m \times n$ matrix G
$G_{i, j}$: payoff to row player, assuming row player uses strategy i, and column player uses strategy j.
$-G_{i, j}$: payoff to column player.
Example: Chess
i : specifies how white would move in every possible board configuration.
j : specifies how black would move.
$G_{i, j}= \begin{cases}1 & \text { if white wins } \\ -1 & \text { if black wins } \\ 0 & \text { stalemate }\end{cases}$

Randomized strategy:
probability distribution on row strategies
A column vector x with
$x_{i} \geq 0, \sum_{i} x_{i}=1$
probability distribution on column strategies
$y_{i} \geq 0, \sum_{j} y_{j}=1$
expected payoff to row player
$x^{\top} G y$

Who decides on their strategy first?

If row player commits to x
Row player will get payoff
$\min _{y} x^{\top} G y=\min _{j}\left(x^{\top} G\right)_{j}$
So, if row player has to play first:
$\max \min x^{\top} G y$
$x \quad y$
If column player commits to y
Row player will get payoff
$\max _{x} x^{\top} G y=\max _{i}(G y)_{i}$
So, if column player has to play first $\min \max x^{\top} G y$

von-Neumann's min-max Theorem

If row player commits to x
Row player will get payoff
$\min _{y} x^{\top} G y=\min _{j}\left(x^{\top} G\right)_{j}$
So, if row player has to play first: $\max \min x^{\top} G y$
$x \quad y$

If column player commits to y
Row player will get payoff $\max x^{\top} G y=\max (G y)_{i}$
So, if column player has to play first $\min \max x^{\top} G y$

Doesn't matter who plays first:
Thm:
$\max \min x^{\top} G y=\min \max x^{\top} G y$.

Using strong duality

Thm: $\max \min x^{\top} G y=\min \max x^{\top} G y$.

$$
\begin{array}{cc}
x & y \\
\max _{x} \min _{j}\left(x^{\mathrm{\top}} G\right)_{j}=\min _{y} \max _{i}(G y)_{i}
\end{array}
$$

primal
maximize z
subject to
w $\quad x_{1}+\ldots+x_{m}=1$
for all j,
$y_{j} \quad z \leq\left(x^{\top} G\right)_{j}$
$x \geq 0$

	dual
	minimize w
subject to	
coefficient of z must be 1	$y_{1}+\ldots+y_{m}=1$
	for all i,
coefficient of x_{i} must be ≥ 0	$w \geq(G y)_{i}$
	$y \geq 0$

subject to
$y_{1}+\ldots+y_{m}=1$
for all i,
$w \geq(G y)_{i}$
$y \geq 0$

Algorithms for Linear programs

Simplex Algorithm

Simple
Often fast in practice
Not polynomial time (on pathological counterexamples)

Ellipsoid Algorithm

More complicated
Polynomial time, but not always fast

Simplex

Start with a vertex
In each step, move to a lower vertex

Problem: Number of vertices
on this path can be exponential!

Simplex: how to find initial vertex?

maximize $c^{\top} x$
subject to
$A x \leq b$
$x \geq 0$
minimize $z_{1}+z_{2}+\ldots$
subject to

$$
\begin{aligned}
& A x \leq b+z \\
& x, z \geq 0
\end{aligned}
$$

For this program, $z_{i}=\max \left\{0,-b_{i}\right\}, x=0$ is a vertex. Run simplex to find a solution with $z=0$. The x value of solution will be a a vertex of original program!

Simplex: how to go to better vertex?

maximize $c^{\top} x$
subject to
$A x \leq b$
$x \geq 0$
1. There must be $\hat{A} x=\hat{b}$.
2. Find y satisfying $n-1$ of the equations, $c^{\top} y>0$.
3. Change $x=x+\epsilon y$, until some new equation becomes tight.

Ellipsoid method

Ellipsoid: a squished ball

Ellipsoid method

Ellipsoid: a squished ball

Ellipsoid method

Ellipsoid: a squished ball

Ellipsoid method

Ellipsoid: a squished ball

$$
(2 x)^{2}+(y / 2)^{2} \leq 1
$$

Ratio of area of ellipsoid to sphere:

$$
\frac{1}{2} \cdot \frac{2}{1}=1
$$

Ellipsoid method

Ellipsoid: a squished ball

$$
(2 x)^{2}+(y / 2)^{2} \leq 1
$$

$$
(2(x-1))^{2}+((y-1) / 2)^{2} \leq 1
$$

Ratio of area of ellipsoid to sphere:

$$
\frac{1}{2} \cdot \frac{2}{1}=1
$$

Ellipsoid method

Let U^{-1} be the linear transformation corresponding to a rotation.

Ellipsoid: a squished ball

Ratio of area of ellipsoid to sphere:

$$
\frac{1}{2} \cdot \frac{2}{1}=1
$$

$$
\left(2 U_{1}(x, y)\right)^{2}+\left(U_{2}(x, y) / 2\right)^{2} \leq 1
$$

The desired solution is bounded

Fact: If the solution is finite, then its magnitude is at most $2^{O \text { (poly(input length)). }}$
Pf: If finite, the solution occurs at a vertex. Since every vertex satisfies $B x=d$, for some B, d, we have $x=B^{-1} d$, and the size of coefficients of B^{-1} are polynomially related to the size of coefficients of A.

Fact: If there is finite solution, then volume of feasible region (i.e. polytope) is at least $2^{-O(\text { poly(input length)). }}$
Pf sketch: The smallest angle that can be generated is $2^{-O(\text { poly(input length)). }}$

Ellipsoid method

maximize $c^{\top} x$
subject to $A x \leq b$ $x \geq 0$

Is there x
with

$$
c^{\top} x \geq d
$$

$$
A x \leq b
$$

$$
x \geq 0
$$

Fact: If the solution is finite, then its magnitude is at most $2^{O(\text { poly (input length) })}$.

Fact: If there is finite solution, then volume of feasible region (i.e. polytope) is at least $2^{-O \text { (poly(input length)). }}$

Claim: If we can find x inside polytope in poly time, we can use binary search to find the best value of d in poly time!

Consequence: We know
$-T \leq c^{\top} x \leq T$, where $T \leq 2^{O(\text { poly(input length) })}$.

Using binary search

Check polytope is non-empty

Add new constraint

$$
y=T
$$

Find point

$$
y=T
$$

Add new constraint

Find point: polytope is empty!

Add new constraint

Add new constraint

$y \leq-T / 4$
$y \leq-T / 2$

Find point
$y \leq-T / 4$
$y \leq-T / 2$

Add new constraint

$$
\begin{aligned}
& y \leq-T / 4 \\
& \hline y \leq-3 T / 8 \\
& y \leq-T / 2
\end{aligned}
$$

Find point: polytope is empty!

$$
\begin{aligned}
& y \leq-T / 4 \\
& y \leq-3 T / 8 \\
& y \leq-T / 2
\end{aligned}
$$

$$
y \leq-T / 4
$$

Find point

Conclusion: It is enough to give an algorithm to find a point in a polytope.

Ellipsoid algorithm for finding points in polytopes

Idea: Iteratively find ellipsoids where the density of the polytope is larger and larger, until a point is found

Fact: If the solution is finite, then its magnitude is at most $2^{O(\text { poly(input length) })}$.

Check 0

Find violated inequality

Shift inequality to origin

Find ellipsoid containing half-sphere

Find ellipsoid containing half-sphere

Shift to center

Stretch to get sphere

Check 0

Find violated inequality

Shift inequality to origin

Find ellipsoid containing half-sphere

Find ellipsoid containing half-sphere

Shift to center

Stretch to get sphere

Check 0

Ellipsoid method

Algorithm to find element of non-empty P :

1. Let E be circle of radius R containing polytope P.
2. If $0 \in P$, output 0 .
3. Otherwise half-circle containing P, and ellipsoid E^{\prime} containing half-circle.
4. Scale and shift E^{\prime} to get E, and find element of P using new E.

Key Lemma: $\operatorname{vol}\left(E^{\prime}\right) / \operatorname{vol}(E) \leq e^{\frac{-1}{2(n+1)}}$
Corollary: $\operatorname{vol}(P) / \operatorname{vol}\left(E^{\prime}\right) \geq e^{\frac{1}{2(n+1)}} \cdot \operatorname{vol}(P) / \operatorname{vol}(E)$

Corollary: After t rounds, $\operatorname{vol}(P) / \operatorname{vol}\left(E^{\prime}\right) \geq e^{\frac{t}{2(n+1)}} \cdot \operatorname{vol}(P) / \operatorname{vol}(E)$

Corollary: The algorithm must terminate in poly(input length) steps.

$E: \sum_{i} x_{i}^{2} \leq 1$

E^{\prime} : ellipsoid containing right half-ball

$$
\left(\frac{n+1}{n}\right)^{2}\left(x_{1}-\frac{1}{n+1}\right)^{2}+\frac{n^{2}-1}{n^{2}} \cdot \sum_{i>2} x_{i}^{2} \leq 1
$$

Claim: E^{\prime} contains right half-ball.

$$
\begin{aligned}
& \text { If } x \in E, x_{1} \geq 0 \text {, then } \\
& \left(\frac{n+1}{n}\right)^{2}\left(x_{1}-\frac{1}{n+1}\right)^{2}+\frac{n^{2}-1}{n^{2}} \cdot \sum_{i>2} x_{i}^{2} \\
& =\left(\frac{(n+1) x_{1}-1}{n}\right)^{2}+\frac{n^{2}-1}{n^{2}} \cdot \sum_{i>2} x_{i}^{2} \\
& =\frac{\left(n^{2}+2 n+1\right) x_{1}^{2}-2(n+1) x_{1}+1}{n^{2}}+\frac{n^{2}-1}{n^{2}} \cdot \sum_{i>2} x_{i}^{2} \quad \text { using } 0 \leq x_{1} \leq 1 \text { and } \sum_{i} x_{i}^{2} \leq 1 \\
& =\frac{(2 n+2) x_{1}^{2}-(2 n+2) x_{1}}{n^{2}}+\frac{1}{n^{2}}+\frac{n^{2}-1}{n^{2}} \cdot \sum_{i} x_{i}^{2}=\frac{(2 n+2) x_{1}\left(x_{1}-1\right)}{n^{2}}+\frac{1}{n^{2}}+\frac{n^{2}-1}{n^{2}} \cdot \sum_{i} x_{i}^{2} \leq \frac{1}{n^{2}}+\frac{n^{2}-1}{n^{2}} \leq 1 .
\end{aligned}
$$

Claim: $\operatorname{vol}\left(E^{\prime}\right) / \operatorname{vol}(E) \leq e^{\frac{-1}{2(n+1)}}$
$E: \sum_{i} x_{i}^{2} \leq 1$
$\left(\frac{n+1}{n}\right)^{2}\left(x_{1}-\frac{1}{n+1}\right)^{E^{\prime}}+\frac{n^{2}-1}{n^{2}} \cdot \sum_{i>2} x_{i}^{2} \leq 1$
$\operatorname{vol}\left(E^{\prime}\right) / \operatorname{vol}(E)$

$$
\begin{aligned}
& =\frac{n}{n+1} \cdot\left(\sqrt{\frac{n^{2}}{n^{2}-1}}\right)^{n-1} \\
& =\left(1-\frac{1}{n+1}\right) \cdot\left(1+\frac{1}{n^{2}-1}\right)^{(n-1) / 2} \leq e^{-\frac{1}{n+1}} \cdot e^{\frac{(n-1) 2}{n^{2}-1}}=e^{-\frac{1}{n+1}} \cdot e^{\frac{1}{2(n+1)}}=e^{\frac{-1}{2(n+1)}}
\end{aligned}
$$

Why is linear programming so powerful?

In a sense, every algorithm can be expressed as linear program!

Boolean circuits

Boolean circuits

Fact: If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in time T, then it can be computed by a circuit of size $O(T \log T)$.

Boolean circuits

Fact: If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in time T, then it can be computed by a circuit of size $O(T \log T)$.

$$
\begin{gathered}
x_{g} \leq x_{1} \\
x_{g} \leq x_{2} \\
x_{g} \geq x_{1}+x_{2}-1 \\
x_{g} \geq x_{1} \\
x_{g} \geq x_{2} \\
x_{g} \leq x_{1}+x_{2} \\
\neg x_{g}=1-x_{g} \\
0 \leq x \leq 1
\end{gathered}
$$

Boolean circuits

Fact: If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in time T, then it can be computed by a circuit of size $O(T \log T)$.

$$
\begin{gathered}
x_{g} \leq x_{1} \\
x_{g} \leq x_{2} \\
x_{g} \geq x_{1}+x_{2}-1
\end{gathered}
$$

Computing f is equivalent to finding x satisfying these constraints!

