Linear Programming

A really very extremely big hammer



Given: a polytope
Find: the lowest point in the polytope
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Given: a polytope
Find: the lowest point in the polytope

maximize 7, + 22,
subject to

221 — 2+ 33 L 1
—Z1 T2 — 23 <5

We have fast
algorithms for this!




Linear Algebra primer

a,x € R" think of them as column vectors.
alx=ax +...+ayx,

The set of x satisfying a'x = 0 is a hyperplane.



alx =0
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Find: the lowest point in the polytope




Given: a polytope \ Y

L
Find: the lowest point in the polytope \f”’ ?ﬁ g
/
,%»
7 z <
R e

\} \N\
3 \g




Linear Algebra primer

a,x € R" think of them as column vectors.

alx=ax +...+ayx,

Ax
ArX

A x

m



Given: a polytope \ A\

L
Find: the lowest point in the polytope \f"’ ?ﬁ g
/
*»
7 z <
N Y
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maximize c'x
subject to
Ax < b

Ax < b means
(Ax); < b,
for all 1




Standard form

maximize c'x
subject to
Ax < b

x>0



Standard form maximize z, + 22,

subject to

o -1+ —253 55
maximize cx ! 0

subject to
Ax < b
x>0



Standard form maximize z, + 22,

subject to

o -1+ —23 <5
maximize cx ! 2

subject to
Ax < b l

x>0 .
maximize (xlaa — xl,b) T 2(x3,a o x3,b)

subject to

2(x1’a — xlab) — (362,6Z — Xz,b) T 3(x3,a — x3,b) <1
— (X=X )+ (0, — X)) — (3, — X3,) < S
x>0



Max Flow

Given: a flow network

maximize flow out of s
subject to

Respecting capacities and
conservation
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Max Flow

Given: a flow network

maximize flow out of s maximize Z _Xe

subject to e Out of s

. " subject to
Respecting capacities and

conservation
for all e,

0<x, < c(e)



Max Flow

Given: a flow network

maximize flow out of s
subject to

Respecting capacities and
conservation

maximize Z X,

e out of s
subject to
for all e,
0<x, < c(e)

for all iIntermediate v,

Z X, = Z X,

e out of v e INTO v




maximize 2 X,

e out of s
subject to
for all e,
0<x, < c(e)

for all iIntermediate v,

Z X, = Z X,

e out of v e INTO v
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subject to
Ax < b

x>0



maximize 2 X,

e out of s
subject to
for all e,
0<x, < c(e)

for all iIntermediate v,

Z X, = Z X,

e out of v e INTO v

maximize c'x
subject to
Ax < b

x>0

{

1 ifeoutofs
0 otherwise.



maximize 2 X,

e out of s
subject to
for all e,
0<x, < c(e)

for all iIntermediate v,

Z X, = Z X,

e out of v e INTO v

maximize c'x
subject to
Ax < b

x>0

0 otherwise.
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{1 if e out of §
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maximize 2 X,

e out of s
subject to
for all e,
0<x, < c(e)

for all iIntermediate v,

2 %= )

e out of v e INTO v

maximize c'x
subject to
Ax < b

x>0

0O otherwise.
2. ulx>r=(—u)x<-—r
3. ulx=r=u'x<r,ulx>r

{1 if e out of §
1. ¢, =



maximize 2 X,

e out of s
subject to
for all e,
0<x, < c(e)

for all iIntermediate v,

Z X, = Z X,

e out of v e INTO v

maximize c'x
subject to
Ax < b

x>0

1 ifeoutofs
1. ¢, = ,
0O otherwise.
2. ulx>r=(—uwlx<-—-r
ulx=r=ux<rulx>r
4. maximize c'x = minimize (—c¢)'x

&0



Shortest paths

Given: a directed graph

Find: shortest path from s to ¢



minimize er
Shortest paths :

subject to

Given: a directed graph for all e,

Find: shortest path from s to ¢ X, 2 0,

Claim: Length of the shortest path is flow out of s is 1 2 Ae T Z X, =1,

solution to program. e OUt Of s eintos

flow into 7 is 1 Z Ae — Z KXo = 1,

e lnto ¢ e out of ¢

forall v # s, ¢,

conservation of flow E xe — E X o

e out of v e INtO v



minimize er
Shortest paths :

subject to
Given: a directed graph for all e,
: >

Find: shortest path from s to ¢ %, 2 U,
Claim: Length of the shortest path is 2 te Z X =1,
solution to program. eoutofs  ¢intos

Z X, — Z x, =1,
Proof sketch: Optimal solution must be a combination elnto: e out of ¢
of flows on shortest paths. Indeed, if there is a path
using edges with x, > 0 that is not a shortest path, forall v # s, 1,
delete the flow on this path and reroute it on a shortest Z X, = Z X,

path to get a better solution. e out of v e into v



Vertex Cover

Given: an undirected graph

Find: smallest set of vertices touching
all edges



Vertex Cover

Given: an undirected graph

Find: smallest set of vertices touching
all edges

minimize Z X,
V
subject to

for all v,
0<x <1,

foralle = {u, v}
x,+x,2> 1



Vertex Cover

Given: an undirected graph

Find: smallest set of vertices touching

all edges

Want
x,=0orx, =1

minimize 2 X,

v

X

foralle = {u, v}
x,+x,2>1

subject to

for all v,
0<x <1,




Vertex Cover

Given: an undirected graph

Find: smallest set of vertices touching

all edges

1/2

1/2
1/2

There is a solution of value 3/2, even though
smallest vertex cover has size 2.

Want
x,=0orx, =1

minimize 2 X,

v

subject to

foralle = {u, v}
x,+x,2>1

for all v,
0<x <1,




Duality

maximize x; + 2x;
subject to
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Duality

maximize x; + 2x;
subject to

2 =X +3x; Z 1
—X| T Xy — X3 <5
x>0

Claim: Optimum < 6



Duality

maximize x; + 2x;
subject to

2 =X +3x; Z 1
—X;+X% —x3 55
x>0

Claim: Optimum < 6
Pf: x; + 2x,

= (2x; — X%, + 3x3) + (—x; + X, — X3)
<6



S

Duality Claim: For all non-negative a, b, if

2a-b>1
maximize x; + 2x; —a+b>0
subject to 3a—-b>2
2x; — X% +3x; < 1 then
— X1+ X —Xx <5 opt <a+5b
x>0
- Pf:
Claim: Optimum < 6 X + 2x3
Pf: x; + 2x; - < a(2x) — x5+ 3x3) + b(—x; + X, — X3)

=(le—x2+3x3)+(—x1+x2—x3)é S a—l—Sb.
<6 5



Duality Claim: For all non-negative a, b, if

2a-b>1
maximize x; + 2x; —a+b>0
subject to 3a—-b>2
2x1 — Xy T 3x3 <1 primal then
— X1+ X —Xx <5 opt <a+5b
x>0
minimize a + 5b o
subject to M + 2%,
2a—b> 1 < a(2x) — x4+ 3x3) + b(—x; + X, — x3)
—Cl-l-bZ() dual SCl-l-Sb
3a—b>?2 :

a,b >0



Duality Claim: For all non-negative a, b, if

2a—-b>1
maximize x; + 2x; —a+b>0
subject to 3a—-b>2
2x1 — Xy T 3x3 <1 primal then
— X1+ X —Xx <5 opt <a+5b
x>0
maximize —a — 5b oF )
subject to A T o
—261 n b S o 1 o S Cl(le — X2 + 3X3) + b(—xl +X2 — X3)
a—b <0 <a+5b.
—3a+b< -2 '

a,b >0



S

Duality

maximize x; + 2x;
subject to

2 =X +3x; Z 1
— X1+ X —Xx <5
x>0

maximize —a — 5b

subject to
—2a+b< -1
a—b <0
—3a+b < -2

a,b >0

primal

dual

What is dual of dual?



S

Duality

maximize x; + 2x;
subject to

2 =X +3x; Z 1
— X1+ X —Xx <5
x>0

maximize —a — 5b

subject to
—2a+b< -1
a—b <0
—3a+b < -2

a,b >0

primal

dual

What is dual of dual?

minimize —y,; — 2y,
subject to
=2y +y,—3y; 2 — 1

V=Vt =—5
y >0



Duality

maximize x; + 2x;
subject to
(l 2xl_.X2+3.X3S1

b —xi+x—x3 <5
x>0
maximize —a — 5b
subject to

i =2a+b< -1

Vo a—b<0

V32 =3a+b<-=-2
a,b >0

primal

dual

What is dual of dual?

minimize —y,; — 2y,
subject to

=2y +y,—3y; 2 — 1
Vi—=Y+y3=2—3
y=>0

equivalent to

maximize y, + 2y,
subject to

2y1 =y, +3y; <1

—y1+ Y, —y3 <5
y=>0



Duality

primal

maximize c'x
subject to
Ax < b

x>0

dual
minimize by
subject to
Aly > c
y=>0

dual
maximize (—b)'y
subject to
(A)ly < —c
y =20



Duality

primal dual dual
maximize c'x minimize by maximize (—b)'y
subject to subject to _ subject to
Ax <b Aly 2 c B (—A)ly < —c
x>0 y=0 y > 0

Thm: The dual of the dual is the primal.



Duality

primal dual dual
maximize c'x minimize by maximize (—b)'y
subject to subject to _ subject to
Ax <b Aly 2 c B (—A)ly < —c
x>0 y=0 y > 0

Thm: The dual of the dual is the primal.

dual of dual
minimize (—c)'x
subject to
(FA)Hx > =D
x>0



Duality

primal dual
maximize cTx minimize Oy
subject to subject to
Ax < b Aly > ¢
x>0 y=>0

Thm: The dual of the dual is the primal.

dual of dual
minimize (—c)'x maximize c'x
subject to subject to

(“A)Dx > -0 Ax < b
x>0 x>0

dual
maximize (—b)'y
subject to
(A)ly < —c
y =20



Duality

primal dual
maximize cTx minimize by
subject to subject to
Ax < b Aly =¢
x>0 y=>0

Thm: The dual of the dual is the primal.

Thm: (Weak Duality) Every solution to primal is at most every
solution to dual.



Duality

primal dual
maximize cTx minimize by
subject to subject to
Ax < b Aly =¢
x>0 y=>0

Thm: The dual of the dual is the primal.

Thm: (Weak Duality) Every solution to primal is at most every
solution to dual.

Thm: (Strong Duality) If primal has solution of finite value, then
value is equal to optimal solution of dual.



Duality

primal dual
maximize c'x minimize by
subject to subject to
Ax < b Aly <c
x>0 y >0

Thm: (Strong Duality) If
primal has solution of finite
value, then value Is equal to
optimal solution of dual.

Fact: A vertex is
point for which n
of the inequalities
become tight.

By physics:

There must be y;, y; >

V.A; + yjAj = C.

f Ax = b correspond to sides touching x,
ATy = AT = ¢.

Then

bly = IQW = (Ax)Ty = XTAW =xlc=rclx



Duality of Max flow

minimize c'a

maximize Z X, subject to
e out of s
for all e = (s, V),
subject to
J a,+b,> 1
for all e. for allbe i E)u, 1),
0<x, <c(e) e ™ Tu =

for all intermediate v, for all other e = (u, v),

Z r = Z N a,—b,+b,>0

e out of v e INTO v

for all e
a,> 0



Duality of Max flow

maximize Z X,
e out of s

subject to

for all e,
0<x, < c(e)
for all iIntermediate v,

Z X, = Z X,

e out of v e INTO v

minimize c'a
subject to

for all e = (s, V),

a,+ b, > 1

forall e = (u, 1),
a,—b,>0

for all other e = (u, v),
a,—b,+b,>0

for all e
a, > (0

minimize c'a

subject to
b,=1,b,=0
foralle = (u,v),
a,>b,— b,

for all e

a,> 0



minimize c'a
subject to

for all e = (s, v),
a,+b, <1

for all e = (u, 1),
a,—b, <0

for all other e = (u, v),
a,—b,+b,<0

for all e
a, > 0

minimize c'a

subject to
b,=1,b,=0
for all e = (u, v),
d, > bu o bv

for all e

a, > 0

minimize c'a
subject to

b =1,b,=0

S

foralle = (u, v),

a, = max{0,b, — b, }



minimize c'a
subject to

b,=1,b,=0

0<b, <1

forall e = (u, v),

a, = max{0,b, — b, }

Claim: Opt is achieved with
1>b,>0.
Pf. Take any solution and
move the extreme values

up/down. The solution only
Improves.



minimize c'a
subject to

b,=1,b,=0

0<b, <1

foralle = (u,v),

a, = max{0,b, — b, }



minimize c'a
subject to

b,=1,b,=0

0<b, <1

forall e = (u,v),

a, = max{0,b, — b, }

-~ Claim: Opt is achieved with

b, =0/1.
Pf: Pick0 <t <1
uniformly at random. If

b,>t setb, =1,
otherwise set it to 0. The

expected value of resulting

solution Is the same as
originall




DD @C o’(« b,=1

/

minimize cla

|
|

|

subject to

b,=1,b,=0 ,
b € (0.1} Min-Cut!

forall e = (u, v),
a, = max{0,b, — b, }

00) 100106 b, =0



Duality of Shortest Path
minimize )’ x,

€

subject to
for all e,
x, 2 0,
> a3 wel
e out of s ento s
Y - ¥ ow=-l
e out of ¢ e IN tO ¢

forall v # s, t,

Z X, — Z x,=0

e out of v e INto v



Duality of Shortest Path

minimize Z X,

€

subject to
dual
for all e,
X, 2 0, maximize a, — a,
subject to
> n- ¥ oa-t
e out of s e in to s for all edges e = (u, v),
a,—a, <1
> 5= ¥ ow=-l
e out of ¢ e in to ¢

forall v # s, t,

Z X, — Z x,=0

e out of v e INto v



Duality of Shortest Path

minimize Z X,

€

subject to
for all e,
x, 2 0,
> u- ¥ oasl
e out of s ento s

Z X, — Z x,=—1,

e out of ¢ einto¢

forall v # s, t,

Z X, — Z x,=0

e out of v e INto v

dual

maximize a, — a,
subject to

for all edges e = (u, v),

a,—a, <1



Duality and zero-sum games

Two player zero-sum game: Randomized strategy:
an m X n matrix G

G- :: payoff to row player, assuming row playe A column vector.x with
i W , umi W r uses
o -t ° o xiZO’ZxFI

i

strategy 7, and column player uses strategy j.
_Gi,j: payoff to column player.

y; 20, Zszl
J

Example: Chess

1. specifies how white would move in every possible
board configuration. TGy

J: specifies how black would move.

1 if white wins
G;,; =4 —1 ifblack wins
0 stalemate



Who decides on their strategy first?

If row player commits to x Randomized strategy:

Row player will get payoftf
min x'Gy = min(x'G); A column vector x with

y J xiZO,in=1

So, if row player has to play first:
max min x'Gy

Y inO,ZYjZI
J

If column player commits to y

Row player will get payoff x1Gy
max x'Gy = max(Gy);
X l

So, if column player has to play first

min max x'Gy
y X



von-Neumann’s min-max Theorem

If row player commits to x Doesn’t matter who plays first:
Row player will get payoftf Thm:
min x'Gy = min(x'G), max min x'Gy = min max x'Gy.
Y J X Yy y X
So, if row player has to play first:
max min x'Gy
X Yy

If column player commits to y

Row player will get payoftf
max x'Gy = max(Gy);
X l

So, if column player has to play first

min max x'Gy
y X



Using strong duality

Thm: max min x'Gy = min max x'Gy.
X V V X

max min(x'G); = min max(Gy),
X ] y l

primal dual
maximize 7 minimize w
subject to subject to
w X +...+x, =1 coefficient of zmustbe 1~ y;+ ... +y, =1
for all J, for all 1,
Vi z< (XTG)], coefficient of x; mustbe >0 w > (GYy),

x>0 y >0



Algorithms for Linear programs

Simplex Algorithm

Simple
Often fast in practice
Not polynomial time (on pathological counterexamples)

Ellipsoid Algorithm

More complicated
Polynomial time, but not always fast



Simplex

Start with a vertex
In each step,
move to a lower vertex

Problem: Number of vertices
on this path can be
exponential!



Simplex: how to find initial vertex?

maximize c'x minimize 7, + 2, + ...
subject to subject to

Ax < b 7 Ax < b+7

x>0 x,z2>0

For this program, z; = max{0, — b;},x = 0 is
a vertex. Run simplex to find a solution with
z = 0. The x value of solution will be a a vertex

of original program!



Simplex: how to go to better vertex?

maximize c'x
subject to
Ax < b

x>0

A\

1. There must be Ax = b.
2. Find y satisfying n — 1 of
the equations, cTy > 0.

3. Change x = x + €y, until
some new eqguation
becomes tight.

/\

N



Ellipsoid method

Ellipsoid: a squished ball



Ellipsoid method

Ellipsoid: a squished ball

A
\/

(2x)* + (y/2)* < 1




Ellipsoid method

Ellipsoid: a squished ball

A
\/

(2x)* + (y/2)* < 1




Ellipsoid method

Ellipsoid: a squished ball

Ratio of area of ellipsoid to sphere:
1 2
— . — =1
N =

(2x)* + (y/2)* < 1




Ellipsoid method /\

Ellipsoid: a squished ball

(1,1)

Q= 1) +((y—D/2)* < 1

Ratio of area of ellipsoid to sphere:

(2x)* + (y/2)* < 1



Let U~ ! be the linear transformation

Ellipsoid methoc corresponding to a rotation.
Ellipsoid: a squished ball

(Z(Ul(xa y) o 1))2 + ((UZ(xa y) o 1)/2)2 S 1
(U, (6, 9))* + (Uy(x, ) < 1 ‘\

QU (x, )" + (Uy(x,y)/2)* < 1

Ratio of area of ellipsoid to sphere:



The desired solution is bounded

Fact: If the solution is finite, then its magnitude is at most
20(po|y(input Iength))_

Pf. If finite, the solution occurs at a vertex. Since every
vertex satisfies Bx = d, for some B, d, we have x = B~ !d, /

and the size of coefficients of B~! are polynomially related
to the size of coefficients of A.

Fact: If there is finite solution, then volume of feasible region (i.e.
bolytope) is at least 2~ (POl (input length)) /

Pf sketch: The smallest angle that can be generated is
2—0(po|y(input Iength))_




Ellipsoid method

.. | Is there x
maximize c'x .

| with
subject to

— >  clx>d
Ax < b
x > () Ax < b
— x>0

Claim: If we can find x inside
polytope in poly time, we can use
binary search to find the best

value of d in poly time!

Fact: If the solution is finite,

then its magnitude is at
nost 20(po|y(|nput Iength))_

Fact: If there is finite
solution, then volume of
feasible region (i.e.

polytope) is at least
2—0(po|y(input Iength))_

Consequence: We know

—T <clx < T, where
T < 20(po|y(input Iength))_



Using binary search

y=—T



Check polytope is non-empty

y=-T



Add new constraint

y=-T



Find point




Add new constraint

y<—T/2

y=-T



Find point: polytope is empty!

y < —T1/2

y=-T1



Add new constraint

y<-—T/4

y<—T/2



Add new constraint

y< —T/4

y<—T/2



Find point

y<-—T/4

y< —T/2



y<-—T/4

y< —T)/2



Add new constraint

y<—T/4
y < —37T/8
y< —T/2




Find point: polytope is empty!

y< —T/4
y< —37/8
y < —T1/2



y<-—T/4
y< —37/8




Find point

y< —T/4
y<—37/8




Conclusion: It is enough to give an
algorithm to find a point in a polytope.




Ellipsoid algorithm for finding points in polytopes

Idea: Iteratively find ellipsoids where the density of
the polytope Is larger and larger, until a point is
found






Fact: If the solution is finite,

then its magnitude is at
nost 20Poly(input Iength))_




Check 0




Find violated inequality




Shift inequality to origin




Find ellipsoid containing
half-sphere




Find ellipsoid containing
half-sphere




Shift to center




Stretch to get sphere




Check 0




Find violated inequality




Shift inequality to orig




Find ellipsoid containing

half-sphere ﬁ




Find ellipsoid containing
half-sphere




Shift to center




Stretch to get sphere




Check 0




Ellipsoid method

Algorithm to find element of non-empty F:

Is there x | | o
with 1. Let £ be circle of radius R containing polytope P.
Ty > 2.1f 0 € P, output 0.
Ax < b 3. Otherwise half-circle containing P, and ellipsoid £’
N >_() containing half-circle.
- 4. Scale and shift £’ to get E, and find element of P
using new L.
B Corollary: After ¢ rountds,
Key Lemma: vol(E’)/vol(E) < ¢2+1 vol(P)/vol(E") > ex+D - vol(P)/vol(E)

Corollary: vol(P)/vol(E") > ez<n1+1> . vol(P)/vol(E) Corollary: The algorithm must terminate in
poly(input length) steps.



E: inz <1

E": ellipsoid containing right half-ball

() (i) + S B

Claim: £’ contains right half-ball.

If x € £, x; > 0, then

+1\2 1 \2 n*-1
() (=) + = 2
n n+1 n?

1>2

:<(n+1)x1—1>2=n — 1 Z )
n

>2

(n +2n+1)x1 2+ Dx; + 1 n 21 Z )

> using 0 < x; <1 and Zx?ﬁl
n .
>2 l

2 2
:(2n+2)x1—(2n+2)x1 : | : n?— 1 Z > _(2n+2)x1(x1—1) | : n-—1 -Zx-z p | : n ;1 <1
n

n? "2



Claim: vol(L£")/vol(E) < T+ T

E: inz <1

E"
n+1\2 1 )2 n®—1 ,
Xy — + . x- <1
( n ) ( : n+1 n2 Dzz l
vol(E")/vol(E)
on ( n’ )n—l
Cn+1 \nz—l using 1 + z < €7
1

1 (n—1)/2 | (n— 1)/2 , | 1
(1— ) <1+ ) Sg n+l « @ n2-1 == @ n+l .« e2n+1) == p2(n+1)
n+1 n?—1



Why is linear programming so powerful?

In a sense, every algorithm can be expressed as
linear program!



Boolean circuits




Boolean circuits

Fact: If f: {O0,1}" — {0,1} can be computed in
time 7, then it can be computed by a circuit of
size O(T logT) .




Boolean circuits

Fact: If f: {O0,1}" — {0,1} can be computed in
time 7, then it can be computed by a circuit of
size O(T logT) .

, X,
Xg < X

Xe 2 X +x,— 1

A w(V) gz
A A 7

\‘ >x2

C Xq <x1+x2

X, —l—x




BOOIean CIrCUItS Fact: If f: {O0,1}" — {0,1} can be computed in

time 7, then it can be computed by a circuit of

D Xy B X size O(T logT) .
° xg@ Xg S X
' Xe < X
0 Xe 2 X +x,— 1
Computing fis
° ° equivalent to
° xg@ X, > X finding x satisfying

X ‘ X, > X, these constraints!

DEONIE



