Algorithm: Sel(numbers,k)

Given: numbers $x_1, ..., x_n$, k, output k’th smallest number.
Algorithm: Sel(numbers,k)

Given: numbers $x_1, ..., x_n$, k, output k’th smallest number.

Sort the numbers! $O(n \log n)$ time.

Can we do better?
Given: $x_1, ..., x_n$, k, output k'th smallest number.

Algorithm: Sel(numbers, k)

1. Partition numbers into sets of size 3
Algorithm: Sel(numbers, k)

1. Partition numbers into sets of size 3
2. Sort each set
1. Partition numbers into sets of size 3
2. Sort each set
3. $w = \text{Sel}(\quad , n/6)$
1. Partition numbers into sets of size 3
2. Sort each set
3. \(w = \text{Sel}(___, n/6) \)

\[
egin{align*}
S_L(w) &= \{ x_i \mid x_i < w \} \\
S_E(w) &= \{ x_i \mid x_i = w \} \\
S_G(w) &= \{ x_i \mid x_i > w \}
\end{align*}
\]

Can be computed in linear time
1. Partition numbers into sets of size 3
2. Sort each set
3. \(w = \text{Sel}(\) , n/6) \)

\[
\begin{align*}
S_L(w) &= \{ x_i \mid x_i < w \} \\
S_E(w) &= \{ x_i \mid x_i = w \} \\
S_G(w) &= \{ x_i \mid x_i > w \}
\end{align*}
\]

- Can be computed in linear time

4. if \(k \leq |S_L(w)| \), output \(\text{Sel}(S_L(w), k) \)
else if \(k \leq |S_L(w)| + |S_E(w)| \), output \(w \)
else output \(\text{Sel}(S_G(w), k - |S_L(w)|-|S_E(w)|) \)
Algorithm: Sel(numbers, k)

\[w = \text{Sel}(), \frac{n}{6} \]

If \(k \leq |S_L(w)| \), output \(\text{Sel}(S_L(w), k) \)

Else if \(k \leq |S_L(w)| + |S_E(w)| \), output \(w \)

Else output \(\text{Sel}(S_G(w), k - |S_L(w)| - |S_G(w)|) \)
Algorithm: Sel(numbers, k)

\[w = \text{Sel}(\text{numbers}, \frac{n}{6}) \]

if \(k \leq |S_L(w)| \), output \(\text{Sel}(S_L(w), k) \)
else if \(k \leq |S_L(w)| + |S_E(w)| \), output \(w \)
else output \(\text{Sel}(S_G(w), k - |S_L(w)| - |S_G(w)|) \)
Algorithm: Sel(numbers, k)

1. Partition numbers into sets of size 3
2. Sort each set
3. \(w = \text{median of } \)
 \[S_L(w) = \{ x_i \mid x_i < w \} \]
 \[S_E(w) = \{ x_i \mid x_i = w \} \]
 \[S_G(w) = \{ x_i \mid x_i > w \} \]

4. if \(k \leq |S_L(w)| \), output Sel(S_L(w), k)
 else if \(k \leq |S_L(w)| + |S_E(w)| \), output w
 else output Sel(S_G(w), k - |S_L(w)| - |S_E(w)|)

\[T(n) = T(n/3) + T(2n/3) + O(n) \]

Can be computed in linear time

\[|S_L(w)| + |S_E(w)|, |S_G(w)| + |S_E(w)|, \text{ at least } 2(n/6) = n/3 \]
Algorithm: Sel(numbers, k)

1. Partition numbers into sets of size 3
2. Sort each set (only in our heads)
3. \(w = \text{median of } numbers \)
\
\[
\begin{align*}
|S_L(w)| + |S_E(w)|, |S_G(w)| + |S_E(w)|, \text{ at least } 2(n/6) = n/3
\end{align*}
\]

4. if \(k \leq |S_L(w)| \), output Sel(S_L(w), k)
else if \(k \leq |S_L(w)| + |S_E(w)| \), output \(w \)
else output Sel(S_G(w), k - |S_L(w)| - |S_E(w)|)

1. Partition numbers into sets of size 3
2. Sort each set (only in our heads)
3. \(w = \text{median of } numbers \)

\[
\begin{align*}
S_L(w) = \{ x_i \mid x_i < w \} \\
S_E(w) = \{ x_i \mid x_i = w \} \\
S_G(w) = \{ x_i \mid x_i > w \}
\end{align*}
\]

\[T(n) = T(n/3) + T(2n/3) + O(n) \]
so
\[T(n) = O(n \log n) \]

(what's the point???)
Recurrences

\[T(n) = T(\gamma n) + T(\beta n) + n \]
Algorithm: Sel(numbers, k)

1. Partition numbers into sets of size 5
2. Sort each set
3. \(w = \text{median of} \)
 \[
 \begin{align*}
 S_L(w) &= \{x_i \mid x_i < w\} \\
 S_E(w) &= \{x_i \mid x_i = w\} \\
 S_G(w) &= \{x_i \mid x_i > w\}
 \end{align*}
 \] Can be computed in linear time
4. if \(k \leq |S_L(w)| \), output \(\text{Sel}(S_L(w), k) \)
 else if \(k \leq |S_L(w)| + |S_E(w)| \), output \(w \)
 else output \(\text{Sel}(S_G(w), k - |S_L(w)| - |S_E(w)|) \)
Algorithm: Sel(numbers, k)

1. Partition numbers into sets of size 5
2. Sort each set
3. \(w = \text{median of } S_L(w) \) if \(|S_L(w)| + |S_E(w)| \) is at least \(n/5 \)

\[S_L(w) = \{x_i \mid x_i < w\} \]
\[S_E(w) = \{x_i \mid x_i = w\} \]
\[S_G(w) = \{x_i \mid x_i > w\} \]

4. if \(k \leq |S_L(w)| \), output \(\text{Sel}(S_L(w), k) \)
 else if \(k \leq |S_L(w)| + |S_E(w)| \), output \(w \)
 else output \(\text{Sel}(S_G(w), k - |S_L(w)| - |S_E(w)|) \)

Can be computed in linear time
Algorithm: Sel(numbers, k)

1. Partition numbers into sets of size 5
2. Sort each set
3. \(w = \text{median of} \)
 \[S_L(w) = \{ x_i \mid x_i < w \}, \quad S_E(w) = \{ x_i \mid x_i = w \}, \quad S_G(w) = \{ x_i \mid x_i > w \} \] Can be computed in linear time
4. if \(k \leq |S_L(w)| \), output Sel(S_L(w), k)
 else if \(k \leq |S_L(w)| + |S_E(w)| \), output w
 else output Sel(S_G(w), k - |S_L(w)| - |S_E(w)|)

\[|S_L(w)| + |S_E(w)|, \quad |S_G(w)| + |S_E(w)|, \quad \text{at least } 3n/10 \]
1. Partition numbers into sets of size 5
2. Sort each set
3. \(w = \text{median of } \)
4. if \(k \leq |S_L(w)| \), output \(\text{Sel}(S_L(w), k) \)
 else if \(k \leq |S_L(w)| + |S_E(w)| \), output \(w \)
 else output \(\text{Sel}(S_G(w), k - |S_L(w)| - |S_E(w)|) \)