Randomized Algorithms

- Algorithms that make random choices during the computation
- Often faster, simpler than traditional algorithms
Miller-Rabin primality test

Input: n-bit number x.

Goal: decide whether x is a prime number or not.

- Extremely important problem: many applications in cryptography.
- There is a deterministic polynomial time algorithm (AKS-2000), running time is $O(n^{12})$

The test (running time $O(n^2)$):
1. Express $x - 1 = 2^s \cdot d$, where d is odd.
2. Pick $a \in \{1, 2, \ldots, x - 1\}$ uniformly at random.
3. If for some $t = 1, 2, \ldots, s$, $a^{2^t \cdot d} = 1 \mod x$, yet $a^{2^{t-1} \cdot d} \neq -1 \mod x$, conclude that x is not prime. Otherwise conclude that x is prime.

Theorem: If x is prime, the test concludes that x is prime with probability 1. If x is not prime, the test concludes not prime with probability at least $3/4$.
Min-Cut

Input: An undirected graph.

Goal: Partition the vertices of the graph in two sets A, B, to minimize the number of edges going from A to B.

- You can use flows and cuts, but there is a simpler randomized algorithm

Karger’s Algorithm:
1. In each step, pick a uniformly random edge and contract it.
2. Stop when you have just two vertices.
3. Output the corresponding cut.
Karger’s Algorithm:
1. In each step, pick a uniformly random edge and contract it.
2. Stop when you have just two vertices.
3. Output the corresponding cut.

Thm: The algorithm finds the min-cut with probability at least \(\frac{2}{n(n-1)} \).

Pf:
• Suppose the min-cut cuts \(k \) edges.
• Then every vertex must degree \(\geq k \), or else that vertex would already give a smaller min-cut.
• So, the number of edges in the graph is at least \(nk/2 \).
• The probability we pick one of the edges of the min-cut is at most \(\frac{k}{nk/2} = \frac{2}{n} \).
• The probability that an edge of the min-cut is never picked is at least \((1 - \frac{2}{n})(1 - \frac{2}{n+1}) \cdots (1 - \frac{2}{3}) = \left(\frac{n-2}{n}\right) \cdot \left(\frac{n-3}{n-1}\right) \cdot \left(\frac{n-4}{n-2}\right) \cdots = \frac{2}{n(n-1)} \).
Karger's Algorithm:
1. In each step, pick a uniformly random edge and contract it.
2. Stop when you have just two vertices.
3. Output the corresponding cut.

Final algorithm: Repeat the above algorithm $100n(n - 1)$ times. Output the best cut that you find.
Graph coloring

Input: An undirected graph.
Goal: Find a 3-coloring of vertices that maximizes the number of edges that get 2 colors.

Algorithm:
Randomly color the vertices of the graph red, blue, green.

Thm: The expected number of vertices that are properly colored is at least $2m/3$.
Pf: For each edge e, define $X_e = 1$ if the edge e gets two colors, and $X_e = 0$ otherwise.

$$
\mathbb{E}[X_e] = \text{Pr}[X_e = 1] \cdot 1 = 2/3.
$$

So, by linearity of expectation,

$$
\mathbb{E} \left[\sum_e X_e \right] = \sum_e \mathbb{E}[X_e] = 2m/3.
$$

No known poly time algorithm achieves $> 2m/3$.
Dominating set

Input: An undirected graph, every vertex has degree $\geq \Delta$.
Goal: Find a small set of vertices S such that every vertex is either in S or is a neighbor of S.

Algorithm:
1. Randomly include each vertex in the set X, with probability p.
2. Let Y be the set vertices not in X and not a neighbor of X.
3. Output $X \cup Y$.

Claim: The expected size of $X \cup Y$ is at most $pn + n(1 - p)^{1+\Delta} \leq pn + e^{-p(1+\Delta)n}$.
Set $p = \ln(1 + \Delta)/(1 + \Delta)$, to get expected size at most $n(1 + \ln(1 + \Delta))/(1 + \Delta)$.

Pf of Claim:
1. The expected size of X is pn.
2. For each vertex, the probability that it is included in Y is at most $(1 - p)^{1+\Delta}$.
3. So the expected size of Y is $n(1 - p)^{1+\Delta}$.
Matrix product checking in $O(n^2)$ time.

Input: $n \times n$ matrices A, B, C

Goal: Check that $AB = C$

Algorithm:
1. Pick $x \in \{0,1\}^n$ uniformly at random.
2. Check $ABx = Cx$

Claim: If $AB \neq C$, then $\Pr[ABx = Cx] \leq 1/2$.

Pf of Claim:
Let $D = (AB - C)$
Suppose $D_{i,j} \neq 0$, then $(Dx)_i = \sum_k D_{i,k}x_k = D_{i,j}x_j + \sum_{k \neq j} D_{i,k}x_k$, so for every fixing of $\sum_{k \neq j} D_{i,k}x_k$, the probability that $(Dx)_i = 0$ is at most $1/2$.