Randomized Algorithms

- Algorithms that make random choices during the computation
- Often faster, simpler than traditional algorithms

Miller-Rabin primality test

Input: *n*-bit number *x*.

Goal: decide whether *x* is a prime number or not.

- Extremely important problem: many applications in cryptography.
- There is a deterministic polynomial time algorithm (AKS-2000), running time is $O(n^{12})$

The test (running time $O(n^2)$):

- **1.** Express $x 1 = 2^s \cdot d$, where *d* is odd.
- **2.** Pick $a \in \{1, 2, \dots, x 1\}$ uniformly at random.

3. If for some t = 1, 2, ..., s, $a^{2^t \cdot d} = 1 \mod x$, yet $a^{2^{t-1} \cdot d} \neq -1 \mod x$, conclude that *x* is not prime. Otherwise conclude that *x* is prime.

Theorem: If x is prime, the test concludes that x is prime with probability 1. If x is not prime, the test concludes not prime with probability at least 3/4.

Min-Cut

Input: An undirected graph.

Goal: Partition the vertices of the graph in two sets A, B, to minimize the number of edges going from A to B.

You can use flows and cuts, but there is a simpler randomized algorithm

Karger's Algorithm:

- 1. In each step, pick a uniformly random edge and contract it.
- 2. Stop when you have just two vertices.
- **3.** Output the corresponding cut.

Karger's Algorithm:

- 1. In each step, pick a uniformly random edge and contract it.
- 2. Stop when you have just two vertices.
- **3.** Output the corresponding cut.

Thm: The algorithm finds the min-cut with probability at least 2/(n(n-1)). **Pf:**

- Suppose the min-cut cuts k edges.
- Then every vertex must degree $\geq k$, or else that vertex would already give a smaller min-cut.
- So, the number of edges in the graph is at least nk/2.
- The probability we pick one of the edges of the min-cut is at most k/(nk/2) = 2/n.
- The probability that an edge of the min-cut is never picked is at least (1 2/n)(1 2/(n 1))...(1 2/3)= $((n - 2)/n) \cdot ((n - 3)/(n - 1)) \cdot ((n - 4)/(n - 2))... = 2/(n(n - 1)).$

Karger's Algorithm:

- 1. In each step, pick a uniformly random edge and contract it.
- 2. Stop when you have just two vertices.
- **3.** Output the corresponding cut.

Final algorithm: Repeat the above algorithm 100n(n - 1) times. Output the best cut that you find.

Graph coloring

Input: An undirected graph.

Goal: Find a 3-coloring of vertices that maximizes the number of edges that get 2 colors.

Algorithm:

Randomly color the vertices of the graph red, blue, green.

Thm: The expected number of vertices that are properly colored is at least 2m/3. Pf: For each edge e, define $X_e = 1$ if the edge e gets two colors, and $X_e = 0$ otherwise.

 $\mathbb{E}[X_e] = \Pr[X_e = 1] \cdot 1 = 2/3.$ So, by linearity of expectation, $\mathbb{E}[\sum_e X_e] = \sum_e \mathbb{E}[X_e] = 2m/3.$

No known poly time algorithm achieves > 2m/3.

Dominating set

Input: An undirected graph, every vertex has degree $\geq \Delta$. **Goal**: Find a small set of vertices *S* such that every vertex is either in *S* or is a neighbor of *S*.

Algorithm:

- 1. Randomly include each vertex in the set X, with probability p.
- 2. Let Y be the set vertices not in X and not a neighbor of X.
- 3. Output $X \cup Y$.

Claim: The expected size of $X \cup Y$ is at most $pn + n(1-p)^{1+\Delta} \le pn + e^{-p(1+\Delta)}n$. Set $p = \ln(1 + \Delta)/(1 + \Delta)$, to get expected size at most $n(1 + \ln(1 + \Delta))/(1 + \Delta)$. **Pf of Claim:**

- 1. The expected size of X is pn.
- 2. For each vertex, the probability that it is included in Y is at most $(1 p)^{1+\Delta}$.
- 3. So the expected size of *Y* is $n(1-p)^{1+\Delta}$.

Matrix product checking in $O(n^2)$ time.

Input: $n \times n$ matrices A, B, C**Goal:** Check that AB = C

Algorithm:

1. Pick $x \in \{0,1\}^n$ uniformly at random. 2. Check ABx = Cx

Claim: If $AB \neq C$, then $Pr[ABx = Cx] \leq 1/2$.

Pf of Claim:

Let D = (AB - C)Suppose $D_{i,j} \neq 0$, then $(Dx)_i = \sum_k D_{i,k} x_k = D_{i,j} x_j + \sum_{k \neq j} D_{i,k} x_k$, so for every fixing of $\sum_{k \neq j} D_{i,k} x_k$, the probability that $(Dx)_i = 0$ is at most 1/2.