Goal. Given n men and n women, find a "suitable" matching.

- Participants rate members of opposite sex.
- Each man lists women in order of preference from best to worst.
- Each woman lists men in order of preference from best to worst.

Men's Preference Profile

Women's Preference Profile

Perfect matching: everyone is matched monogamously.

- Each man gets exactly one woman.
- Each woman gets exactly one man.

Stability: no incentive for some pair of participants to undermine assignment by joint action.

- In matching M, an unmatched pair m-w is unstable if man m and woman w prefer each other to current partners.
- Unstable pair m-w could each improve by eloping.

Stable matching: perfect matching with no unstable pairs.

Stable matching problem. Given the preference lists of n men and n women, find a stable matching if one exists.

Q. Is assignment X-C, Y-B, Z-A stable?

Men's Preference Profile

Women's Preference Profile

5

- Q. Is assignment X-C, Y-B, Z-A stable?
- A. No. Bertha and Xavier will defect.

Men's Preference Profile

Women's Preference Profile

Men's Preference Profile

Women's Preference Profile

Stable Roommate Problem

- Q. Do stable matchings always exist?
- A. Not obvious a priori.

Stable roommate problem.

- 2n people; each person ranks others from 1 to 2n-1.
- Assign roommate pairs so that no unstable pairs.

Observation. Stable matchings do not always exist for stable roommate problem.

Propose-And-Reject Algorithm

Propose-and-reject algorithm. [Gale-Shapley 1962] Intuitive method that guarantees to find a stable matching.

```
Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) {
   Choose such a man m
   w = 1<sup>st</sup> woman on m's list to whom m has not yet proposed
   if (w is free)
        assign m and w to be engaged
   else if (w prefers m to her fiancé m')
        assign m and w to be engaged, and m' to be free
   else
        w rejects m
}
```

Proof of Correctness: Termination

Observation 1. Men propose to women in decreasing order of preference.

Observation 2. Once a woman is matched, she never becomes unmatched; she only "trades up."

Claim. Algorithm terminates after at most n² iterations of while loop. Pf. Each time through the while loop a man proposes to a new woman. There are only n² possible proposals.

	1 ^{s†}	2 nd	3 rd	4 th	5 th		1 st	2 nd	3 rd	4 th	5 th
Victor	A	В	С	D	E	Amy	W	Х	У	Z	V
Wyatt	В	С	D	A	E	Bertha	Х	У	Z	V	W
Xavier	С	D	А	В	E	Clare	У	Z	V	W	Х
Yancey	D	A	В	С	E	Diane	Z	V	W	Х	У
Zeus	A	В	С	D	E	Erika	V	W	Х	У	Z

n(n-1) + 1 proposals required

Proof of Correctness: Perfection

Claim. All men and women get matched.

- Pf. (by contradiction)
 - Suppose, for sake of contradiction, that Zeus is not matched upon termination of algorithm.
 - Then some woman, say Amy, is not matched upon termination.
 - By Observation 2, Amy was never proposed to.
 - But, Zeus proposes to everyone, since he ends up unmatched.

Proof of Correctness: Stability

Claim. No unstable pairs.

- Pf. (by contradiction)
- Suppose A-Z is an unstable pair: each prefers each other to partner in Gale-Shapley matching S*.
- Case 1: Z never proposed to A.
 ⇒ Z prefers his GS partner to A.
 ⇒ A-Z is stable.
- Case 2: Z proposed to A.
 - \Rightarrow A rejected Z (right away or later)
 - \Rightarrow A prefers her GS partner to Z. \leftarrow women only trade up
 - \Rightarrow A-Z is stable.
- In either case A-Z is stable, a contradiction.

S*

Amy-Yancey

Bertha-Zeus

. . .