Stable Matching Problem

Goal. Given n men and n women, find a "suitable" matching.

- Participants rate members of opposite sex.
- Each man lists women in order of preference from best to worst.
- Each woman lists men in order of preference from best to worst.

	favorite \downarrow		
	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
	Amy	Beastha	Clare
Xavier	Amerite		
Yancey	Bertha	Amy	Clare
Zeus	Amy	Bertha	Clare

Men's Preference Profile

	favorite		
\downarrow		least favorite \downarrow	
	$1^{\text {st }}$	2nd	3rd
Amy	Yancey	Xavier	Zeus
Bertha	Xavier	Yancey	Zeus
Clare	Xavier	Yancey	Zeus

Women's Preference Profile

Stable Matching Problem

Perfect matching: everyone is matched monogamously.

- Each man gets exactly one woman.
- Each woman gets exactly one man.

Stability: no incentive for some pair of participants to undermine assignment by joint action.

- In matching M, an unmatched pair m - w is unstable if man m and woman w prefer each other to current partners.
- Unstable pair m-w could each improve by eloping.

Stable matching: perfect matching with no unstable pairs.
Stable matching problem. Given the preference lists of n men and n women, find a stable matching if one exists.

Stable Matching Problem

Q. Is assignment $X-C, Y-B, Z-A$ stable?

	favorite \downarrow		least favorite
	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Xavier	Amy	Bertha	Clare
Yancey	Bertha	Amy	Clare
Zeus	Amy	Bertha	Clare

Men's Preference Profile

	favorite		
\downarrow		least favorite \downarrow	
	$1^{\text {st }}$	2nd	3rd
Amy	Yancey	Xavier	Zeus
Bertha	Xavier	Yancey	Zeus
Clare	Xavier	Yancey	Zeus

Women's Preference Profile

Stable Matching Problem

Q. Is assignment $X-C, Y-B, Z-A$ stable?
A. No. Bertha and Xavier will defect.

	favorite \downarrow		least favorite
	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Xavier	Amy	Bertha	Clare
Yancey	Bertha	Amy	Clare
Zeus	Amy	Bertha	Clare

Men's Preference Profile

	favorite \downarrow	least favorite \downarrow	
	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {nd }}$
Amy	Yancey	Xavier	Zeus
Bertha	Xavier	Yancey	Zeus
Clare	Xavier	Yancey	Zeus

Women's Preference Profile

Stable Matching Problem

Q. Is assignment $X-A, Y-B, Z-C$ stable?
A. Yes.

	favorite \downarrow		least favorite
	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Xavier	Amy	Bertha	Clare
Yancey	Bertha	Amy	Clare
Zeus	Amy	Bertha	Clare

Men's Preference Profile

	favorite \downarrow	least favorite \downarrow	
	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Amy	Yancey	Xavier	Zeus
Bertha	Xavier	Yancey	Zeus
Clare	Xavier	Yancey	Zeus

Women's Preference Profile

Stable Roommate Problem

Q. Do stable matchings always exist?
A. Not obvious a priori.

Stable roommate problem.

- $2 n$ people; each person ranks others from 1 to $2 n-1$.
- Assign roommate pairs so that no unstable pairs.

$A-B, C-D \Rightarrow B-C$ unstable
$A-C, B-D \Rightarrow A-B$ unstable
$A-D, B-C \Rightarrow A-C$ unstable

Observation. Stable matchings do not always exist for stable roommate problem.

Propose-And-Reject Algorithm

Propose-and-reject algorithm. [Gale-Shapley 1962] Intuitive method that guarantees to find a stable matching.


```
Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) {
    Choose such a man m
    w = 1st woman on m's list to whom m has not yet proposed
    if (w is free)
        assign m and w to be engaged
    else if (w prefers m to her fiancé m')
        assign m and w to be engaged, and m' to be free
    else
        w rejects m
}
```


Proof of Correctness: Termination

Observation 1. Men propose to women in decreasing order of preference.

Observation 2. Once a woman is matched, she never becomes unmatched; she only "trades up."

Claim. Algorithm terminates after at most n^{2} iterations of while loop. Pf. Each time through the while loop a man proposes to a new woman. There are only n^{2} possible proposals. .

	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$
Victor	A	B	C	D	E
Wyatt	B	C	D	A	E
Xavier	C	D	A	B	E
Yancey	D	A	B	C	E
Zeus	A	B	C	D	E

	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$
Amy	W	X	Y	Z	V
Bertha	X	Y	Z	V	W
Clare	Y	Z	V	W	X
Diane	Z	V	W	X	Y
Erika	V	W	X	Y	Z

$n(n-1)+1$ proposals required

Proof of Correctness: Perfection

Claim. All men and women get matched.
Pf. (by contradiction)

- Suppose, for sake of contradiction, that Zeus is not matched upon termination of algorithm.
- Then some woman, say Amy, is not matched upon termination.
- By Observation 2, Amy was never proposed to.
- But, Zeus proposes to everyone, since he ends up unmatched. •

Proof of Correctness: Stability

Claim. No unstable pairs.
Pf. (by contradiction)

- Suppose A-Z is an unstable pair: each prefers each other to partner in Gale-Shapley matching S*. *.
- Case 1: Z never proposed to A.
men propose in decreasing
$\Rightarrow Z$ prefers his $G S$ partner to A.
$\Rightarrow A-Z$ is stable.
- Case 2: Z proposed to A.
$\Rightarrow A$ rejected Z (right away or later)
\Rightarrow A prefers her GS partner to Z. \leftarrow women only trade up
$\Rightarrow A-Z$ is stable.
- In either case $A-Z$ is stable, a contradiction. .

