Analysis

* How to reason about the performance of
algorithms

Defining Efficiency
“Runs fast on typical real problem instances”

Pro:

sensible, bottom-line-oriented

Con:

moving target (diff computers, compilers)
highly subjective (how fast is “fast”? WWhat’s “typical”?)

Efficiency

We want a general theory of “efficiency” that is
Simple
Obijective
Relatively independent of changing technology

But still predictive — “theoretically bad” algorithms
should be bad in practice and vice versa

Measuring efficiency

Time: # of instructions executed in a simple
programming language

only simple operations (+,%-,=,if,call,...)

each operation takes one time step

each memory access takes one time step

no fancy stuff (add these two matrices, copy this long
string,...) built in; write it/charge for it as above

We left out things but...

Things we've dropped

memory hierarchy

disk, caches, registers have many orders of magnitude
differences in access time

not all instructions take the same time in practice (+, +)

communication

different computers have different primitive instructions
However,

one can usually tune implementations so that the
hierarchy, etc., is not a huge factor

Problem

Algorithms can have different running
times on different inputs!

Smaller inputs take less time, larger inputs
take more time.

Solution

Measure performance on problem size n

Average-case complexity: avg # steps algorithm
takes on inputs of size n

Worst-case complexity: max # steps algorithm
takes on any input of size n

Pros and cons:

Average-case

- over what probability distribution? (different settings
may have different “average” problems)

- analysis often hard

Worst-case
+ a fast algorithm has a comforting guarantee
+ analysis easier

+ useful in real-time applications (space shuttle, nuclear
reactors)

- may be too pessimistic

General Goals

Characterize growth rate of (worst-case) run time as a
function of problem size, up to a constant factor

Why not try to be more precise!

Technological variations (computer, compiler, OS, ...)
easily 10x or more

Complexity

The complexity of an algorithm associates a number
T(n), the worst-case time the algorithm takes on
problems of size n, with each problem size n.

Mathematically,
I: N*->R*

l.e., T is a function that maps positive integers (problem
sizes) to positive real numbers (number of steps).

Time

Complexity

Problem size

Time

Complexity

Problem size

O-notation, etc.

Given two functions f and g:N->R

f(n) is O(g(n)) iff there is a constant ¢>0 so that
f(n) is eventually always < c g(n)

f(n) is Q(g(n)) iff there is a constant c>0 so that
f(n) is eventually always > c g(n)

f(n) is O(g(n)) iff there are constants c|, ¢,>0 so that
eventually always c,g(n) < f(n) < c,g(n)

Examples
10n2-16n+100 is O(n?) also O(n?)
10n2-16n+100 < [On%for alln > 10

10n2-16n+100 is Q(n?) also Q(n)

10n%-16n+100 > 9n? for all n >16
Therefore also 10n2-16n+100 is O(n?)

10n2-16n+100 is not O(n) also not Q(n?)

Properties

Transitivity.
If f = O(g) and g = O(h) then f = O(h).
If f = Q(g) and g = Q(h) then f = Q(h).
If f = O(g) and g = O(h) then f = O(h).

Additivity.

If f = O(h) and g = O(h) then f + g = O(h).

If f = Q(h) and g = Q(h) then f + g = Q(h).
If f = O(h) and g = O(h) then f + g = O(h).

Asymptotic Bounds for Some
Common Functions

Polynomials:
ap+an+...+a;nd isO(nd)ifay>0

Logarithms:
log, n = O(log, n) for any constants a,b > |

Logarithms:
For all x > 0, log n = O(nX)

log grows slower than
every polynomial

|7

“One-Way Equalities”

2+2is4 2n% + 5 nis O(n?)
2+2=4 2n%2 + 5 n = O(n?)
4=2+2 O(nd) = 2n2+5h
Bottom line:

OK to put big-O in R.H.S. of equality, but not left.
[Better, but uncommon, notation: T(n) < O(f(n)).]

Big- Theta, etc. not always “pice”

4 2)
n-, neven
f(n)=>: :
'n, nodd
f(n) is not ©(n?) for
any a. \

Fortunately, such
nasty cases are rare

21

Asymptotic Bounds for Some
Common Functions

Exponentials.
Forall r> |
and all d > 0,
nd = O(r").

n
101/ o0

every exponential
grows faster than
every polynomial

23

Polynomial time

P: Running time is O(nY) for some constant d
independent of the input size n.

Nice scaling property: there is a constant c s.t.
doubling n, time increases only by a factor of c.
(E.g., c ~ 29)

Contrast with exponential: For any constant c,
there is a d such that n — n+d increases time by a
factor of more than c.

(Eg, 2" vs 2n+|) 24

Polynomial time

P: Running time is O(nY) for some constant d
independent of the input size n.

Behaves well under composition: if algorithm has a
polynomial running time with polynomial number of calls to a
subroutine that has polynomial running time, then overall
running time is still polynomial.

25

polynomial vs exponential growth

% 10° -

w100 F

=108 F

=108 b

x10% F

22n

2n/10

1000n?2

100 Z0n 300 4010

Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10?° years, we simply record the algorithm as

taking a very long time.

2

3

n nlog, n n n 1.5" 2" n!

n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec

n =30 <lsec <lsec <1sec <1 sec <1 sec 18 min 10%° years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long

n =100 < 1 sec < 1 sec < 1 sec 1 sec 12,892 years 107 years very long
n=1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

27

another view of poly vs exp

Next year's computer will be 2x faster. If | can
solve problem of size ny today, how large a problem

can | solve in the same time next year!?

Complexity Increase E.g. T=101?

O(n) n, — 2n, 102 — 2 x102
O(n2) n, — V2 n, 106 — 1.4 x 106
O(n3) n, — V2 n, 104 — 1.25 x 10
on/10 n, — ng+10 400 — 410
on n, — ny+1 40 — 41

28

Domination

f(n) is o(g(n)) iff lim, . f(n)/g(n)=0
that is g(n) dominates f(n)

If a < b then n? is O(nb)

If a > b then n? is o(nP)

Note:
if f(n) is Q(g(n)) then it cannot be o(g(n))

29

Summary

Typical initial goal for algorithm analysis is to find a

reasonably tight «—— i.e, Oif possible
asymptotic «— ie,Oo0r0
bound on “— usually upper bound

worst case running time

as a function of problem size

This is rarely the last word, but often helps separate
good algorithms from blatantly poor ones - so you
can concentrate on the good ones!

31

