
Analysis

• How to reason about the performance of
algorithms

1

2

Defining Efficiency

“Runs fast on typical real problem instances”

Pro:
sensible, bottom-line-oriented

Con:
moving target (diff computers, compilers)
highly subjective (how fast is “fast”? What’s “typical”?)

3

Efficiency

We want a general theory of “efficiency” that is
Simple

Objective

Relatively independent of changing technology
But still predictive – “theoretically bad” algorithms
should be bad in practice and vice versa

4

Measuring efficiency

Time: # of instructions executed in a simple
programming language

only simple operations (+,*,-,=,if,call,…)

each operation takes one time step
each memory access takes one time step

no fancy stuff (add these two matrices, copy this long
string,…) built in; write it/charge for it as above

5

We left out things but...

Things we’ve dropped
memory hierarchy

disk, caches, registers have many orders of magnitude
differences in access time

not all instructions take the same time in practice (+, ÷)
communication
different computers have different primitive instructions

However,
one can usually tune implementations so that the
hierarchy, etc., is not a huge factor

Problem

• Algorithms can have different running
times on different inputs!

• Smaller inputs take less time, larger inputs
take more time.

6

7

T

n

Solution

Measure performance on problem size n
Average-case complexity: avg # steps algorithm
takes on inputs of size n
Worst-case complexity: max # steps algorithm
takes on any input of size n

8

Pros and cons:

Average-case
- over what probability distribution? (different settings

may have different “average” problems)
- analysis often hard

Worst-case
+ a fast algorithm has a comforting guarantee
+ analysis easier
+ useful in real-time applications (space shuttle, nuclear

reactors)
- may be too pessimistic

10

General Goals

Characterize growth rate of (worst-case) run time as a
function of problem size, up to a constant factor
Why not try to be more precise?

Technological variations (computer, compiler, OS, …)
easily 10x or more

11

Complexity

The complexity of an algorithm associates a number
T(n), the worst-case time the algorithm takes on
problems of size n, with each problem size n.

Mathematically,
T: N+ -> R+

I.e., T is a function that maps positive integers (problem
sizes) to positive real numbers (number of steps).

12
Problem size

Ti
m

e

T(n)

Complexity

13
Problem size

Ti
m

e

T(n)

Complexity

n log2n

2n log2n

14

O-notation, etc.

Given two functions f and g:N->R
f(n) is O(g(n)) iff there is a constant c>0 so that

f(n) is eventually always < c g(n)

f(n) is Ω(g(n)) iff there is a constant c>0 so that
f(n) is eventually always > c g(n)

f(n) is Θ(g(n)) iff there are constants c1, c2>0 so that
eventually always c1g(n) < f(n) < c2g(n)

15

Examples

10n2-16n+100 is O(n2) also O(n3)
10n2-16n+100 < 10n2 for all n > 10

10n2-16n+100 is Ω(n2) also Ω(n)

10n2-16n+100 > 9n2 for all n >16
Therefore also 10n2-16n+100 is Θ(n2)

10n2-16n+100 is not O(n) also not Ω(n3)

16

Properties

Transitivity.
If f = O(g) and g = O(h) then f = O(h).
If f = Ω(g) and g = Ω(h) then f = Ω(h).
If f = Θ(g) and g = Θ(h) then f = Θ(h).

Additivity.
If f = O(h) and g = O(h) then f + g = O(h).
If f = Ω(h) and g = Ω(h) then f + g = Ω(h).
If f = Θ(h) and g = Θ(h) then f + g = Θ(h).

17

log grows slower than
every polynomial

Asymptotic Bounds for Some
Common Functions

Polynomials:
a0 + a1n + … + adnd is Θ(nd) if ad > 0

Logarithms:
loga n = Θ(logb n) for any constants a,b > 1

Logarithms:
For all x > 0, log n = O(nx)

18

2 + 2 is 4 2n2 + 5 n is O(n3)
2 + 2 = 4 2n2 + 5 n = O(n3)
4 = 2 + 2 O(n3) = 2n2 + 5 n

Bottom line:
OK to put big-O in R.H.S. of equality, but not left.

[Better, but uncommon, notation: T(n) < O(f(n)).]

“One-Way Equalities”

21

€

f (n) =
n2, n even
n, n odd

"

$

%
&
'

f(n) is not Θ(na) for
any a.

Fortunately, such
nasty cases are rare

Big-Theta, etc. not always “nice”

23

every exponential
grows faster than
every polynomial

Asymptotic Bounds for Some
Common Functions

Exponentials.
For all r > 1
and all d > 0,
nd = O(rn).

n1001.01n

24

Polynomial time

P: Running time is O(nd) for some constant d
independent of the input size n.
Nice scaling property: there is a constant c s.t.
doubling n, time increases only by a factor of c.

(E.g., c ~ 2d)

Contrast with exponential: For any constant c,
there is a d such that n → n+d increases time by a
factor of more than c.

(E.g., 2n vs 2n+1)

25

Polynomial time

P: Running time is O(nd) for some constant d
independent of the input size n.

Behaves well under composition: if algorithm has a
polynomial running time with polynomial number of calls to a
subroutine that has polynomial running time, then overall
running time is still polynomial.

26

22n

2n/10

1000n2

22n

2n/10

1000n2

polynomial vs exponential growth

27

Why It Matters

Next year's computer will be 2x faster. If I can
solve problem of size n0 today, how large a problem
can I solve in the same time next year?

28

Complexity Increase E.g. T=1012

O(n) n0 → 2n0 1012 → 2 x 1012

O(n2) n0 → √2 n0 106 → 1.4 x 106

O(n3) n0 → ∛2 n0 104 → 1.25 x 104

2n /10 n0 → n0+10 400 → 410
2n n0 → n0 +1 40 → 41

another view of poly vs exp

29

Domination

f(n) is o(g(n)) iff limn->∞ f(n)/g(n)=0
that is g(n) dominates f(n)

If a < b then na is O(nb)

If a > b then na is o(nb)

Note:
if f(n) is Ω(g(n)) then it cannot be o(g(n))

31

Summary

Typical initial goal for algorithm analysis is to find a
reasonably tight i.e., Θ if possible

asymptotic i.e., O or Θ

bound on usually upper bound

worst case running time

as a function of problem size

This is rarely the last word, but often helps separate
good algorithms from blatantly poor ones - so you
can concentrate on the good ones!

