Intro: Coin Changing

Coin Changing

Goal. Given currency denominations: $1,5,10,25,100$, give change to customer using fewest number of coins.
 coin valued \leq the amount to be paid.

Ex: \$2.89.

Coin-Changing: Does Greedy Always Work?

Observation. Greedy algorithm is sub-optimal for US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140ф.

- Greedy: 100, 34, 1, 1, 1, 1, 1, 1.
- Optimal: 70, 70.

Algorithm is "Greedy", but also short-sighted - attractive choice now may lead to dead ends later.

Correctness is key!

Outline \& Goals

"Greedy Algorithms" what they are

Pros
intuitive
often simple
often fast

Cons
often incorrect!

Proof techniques
stay ahead
structural
exchange arguments

Plan

Greed
Greeed
Greeeeeed
Greeeeeeeeeeec

4.1 Interval Scheduling

Proof Technique 1: "greedy stays ahead"

Interval Scheduling

Interval scheduling.

- Job j starts at s_{j} and finishes at f_{j}.
- Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

- What order?
- Does that give best answer?
- Why or why not?
- Does it help to be greedy about order?

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.
[Earliest start time] Consider jobs in ascending order of start time s_{j}.
[Earliest finish time] Consider jobs in ascending order of finish time f_{j}.
[Shortest interval] Consider jobs in ascending order of interval length $f_{j}-s_{j}$.
[Fewest conflicts] For each job, count the number of conflicting jobs c_{j}. Schedule in ascending order of conflicts c_{j}.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.
counterexample for earliest start time

counterexample for fewest conflicts

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.
[Eanliest start time] Consider jobs in ascending of stamt time sif $_{j}$
[Earliest finish time] Consider jobs in ascending order of finish time f_{j}.
[Shontest interval]-Consider jobs in ascending or intervallength $f_{f}-\mathcal{S}_{\mathrm{f}}=$
[Fewest conflicts]-Fo jore job, count the number conflicting jobs c_{j} : Schedule in arending of confliets e_{j} :

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.

```
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{}
    |}\mathrm{ jobs selected
A = {}
for j = 1 to n {
    if (job j compatible with A)
    A = A U {j}
}
return A
```

Implementation. $O(n \log n)$.

- Remember job j* that was added last to A.
- Job j is compatible with A if $s_{j} \geq f_{j *}$.

Interval Scheduling

Interval Scheduling

Interval Scheduling

Interval Scheduling

Interval Scheduling

Interval Scheduling

Interval Scheduling

Interval Scheduling

		B		E		G				
0	1	2	3	4	5	6	7	8	9	10

Interval Scheduling

Interval Scheduling: Correctness

Theorem. Greedy algorithm is optimal.

Pf. ("greedy stays ahead")
Let $\mathrm{i}_{\mathrm{l}}, \mathrm{i}_{2}, \ldots \mathrm{i}_{\mathrm{k}}$ be jobs picked by greedy, $\mathrm{j}_{1}, \mathrm{j}_{2}, \ldots \mathrm{j}_{\mathrm{m}}$ those in some optimal solution Show $f\left(i_{r}\right) \leq f\left(j_{r}\right)$ by induction on r.

Basis: i_{l} chosen to have min finish time, so $f\left(\mathrm{i}_{\mathrm{I}}\right) \leq \mathrm{f}\left(\mathrm{j}_{\mathrm{I}}\right)$
Ind: $f\left(i_{r}\right) \leq f\left(j_{r}\right) \leq s\left(j_{r+1}\right)$, so j_{r+1} is among the candidates considered by greedy when it picked i_{r+1}, \& it picks min finish, so $f\left(\mathrm{i}_{r+1}\right) \leq f\left(\mathrm{j}_{\mathrm{r}+1}\right)$
Similarly, $\mathrm{k} \geq \mathrm{m}$, else $\mathrm{j}_{\mathrm{k}+1}$ is among (nonempty) set of candidates for $\mathrm{i}_{\mathrm{k}+1}$

4.1 Interval Partitioning

Proof Technique 2: "Structural"

Interval Partitioning

Interval partitioning.

- Lecture j starts at s_{j} and finishes at f_{j}.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Interval Partitioning as Interval Graph Coloring

Vertices = classes;
edges = conflicting class pairs;
different colors = different assigned rooms

Note: graph coloring is very hard in general, but graphs corresponding to interval intersections are a much simpler special case.

Interval Partitioning

Interval partitioning.

- Lecture j starts at s_{j} and finishes at f_{j}.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider lectures in some order. If next lecture fits in the schedule we have, add it to one of the classrooms, otherwise open a new classroom.
[Earliest start time] Consider lectures in ascending order of start time s_{j}.
[Earliest finish time] Consider lectures in ascending order of finish time f_{j}.
[Shortest interval] Consider lectures in ascending order of interval length $f_{j}-s_{j}$.
[Fewest conflicts] For each lecture, count the number of conflicting lectures c_{j}. Schedule in ascending order of conflicts c_{j}.

Interval Scheduling: Greedy Algorithms

counterexample for earliest finish time

Interval Scheduling: Greedy Algorithms

Greedy template. Consider lectures in some order. If next lecture fits in the schedule we have, add it to one of the classrooms, otherwise open a new classroom.
[Earliest start time] Consider lectures in ascending order of start time s_{j}.
[Earliest finish time] Consider lectures in ascending onder of finish time f_{f}
[Shontest intenval]-Considerlectures in ascending order of interval tength $f_{j}-s_{j}:$
> [Fewest conflicts]-For eachlecture, count the number of conflicting tectures ϵ_{j}. Schedule in ascending order of conflicts ϵ_{j} :

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

```
Sort intervals by starting time so that s}\mp@subsup{s}{1}{}\leq\mp@subsup{s}{2}{}\leq\ldots\leq\mp@subsup{s}{n}{
d= 0 \longleftarrow number of allocated classrooms
for j = 1 to n {
    if (lect j is compatible with some classroom k, 1\leqk\leqd)
        schedule lecture j in classroom k
    else
        allocate a new classroom d + 1
        schedule lecture j in classroom d + 1
        d = d + 1
}
```


Implementation? Run-time?
 Exercises

Interval Partitioning

Interval Partitioning: A "Structural" Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that contain any given time.

Key observation. Number of classrooms needed \geq depth.

Ex: Depth of schedule below $=3 \Rightarrow$ schedule below is optimal.

$$
a, b, c \text { all contain } 9: 30
$$

Q. Does there always exist a schedule equal to depth of intervals?

Interval Partitioning: Greedy Analysis

Theorem. Greedy algorithm is optimal.
Pf (exploit structural property).

- Let $d=$ number of classrooms that the greedy algorithm allocates.
- Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all d-1 previously used classrooms.
- Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s_{j}.
- Thus, we have d lectures overlapping at time s_{j}, i.e. depth $\geq d$ - "Key observation" all schedules use \geq depth classrooms, so d = depth and greedy is optimal .

