
Intro: Coin Changing

2

Coin Changing

Goal. Given currency denominations: 1, 5, 10, 25, 100,
give change to customer using fewest number of coins.

Ex: 34¢.

Cashier's algorithm. At each iteration, give the largest
coin valued ≤ the amount to be paid.

Ex: $2.89.

3

Coin-Changing: Does Greedy Always Work?

Observation. Greedy algorithm is sub-optimal for US
postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.
! Greedy: 100, 34, 1, 1, 1, 1, 1, 1.
! Optimal: 70, 70.

Outline & Goals

“Greedy Algorithms”

what they are

Pros

intuitive
often simple
often fast

Cons
often incorrect!

Proof techniques
stay ahead

structural
exchange arguments

4

Plan

Greed

Greeed

Greeeeeed

Greeeeeeeeeeed

5

4.1 Interval Scheduling

Proof Technique 1: “greedy stays ahead”

7

Interval Scheduling

Interval scheduling.
! Job j starts at sj and finishes at fj.
! Two jobs compatible if they don’t overlap.
! Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

8

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

! What order?
! Does that give best answer?
! Why or why not?
! Does it help to be greedy about order?

9

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

[Earliest start time] Consider jobs in ascending order of start time sj.

[Earliest finish time] Consider jobs in ascending order of finish time fj.

[Shortest interval] Consider jobs in ascending order of interval length
fj - sj.

[Fewest conflicts] For each job, count the number of conflicting jobs cj.
Schedule in ascending order of conflicts cj.

10

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts

11

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

[Earliest start time] Consider jobs in ascending order of start time sj.

[Earliest finish time] Consider jobs in ascending order of finish time fj.

[Shortest interval] Consider jobs in ascending order of interval length
fj - sj.

[Fewest conflicts] For each job, count the number of conflicting jobs cj.
Schedule in ascending order of conflicts cj.

12

Greedy algorithm. Consider jobs in increasing order of finish time.
Take each job provided it’s compatible with the ones already taken.

Implementation. O(n log n).
! Remember job j* that was added last to A.
! Job j is compatible with A if sj ≥ fj*.

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

A = {}
for j = 1 to n {

if (job j compatible with A)
A = A ∪ {j}

}
return A

jobs selected

Interval Scheduling: Greedy Algorithm

13

Interval Scheduling

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

0 1 2 3 4 5 6 7 8 9 10 11

14

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

15

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B C

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

16

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B A

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

17

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

18

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B ED

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

19

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E F

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

20

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E G

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

21

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E H

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

22

Interval Scheduling: Correctness

Theorem. Greedy algorithm is optimal.

Pf. (“greedy stays ahead”)
Let i1, i2, ... ik be jobs picked by greedy, j1, j2, ... jm those in some optimal solution

Show f(ir) ≤ f(jr) by induction on r.
Basis: i1 chosen to have min finish time, so f(i1) ≤ f(j1)
Ind: f(ir) ≤ f(jr)≤ s(jr+1), so jr+1 is among the candidates considered by greedy

when it picked ir+1, & it picks min finish, so f(ir+1) ≤ f(jr+1)
Similarly, k ≥ m, else jk+1 is among (nonempty) set of candidates for ik+1

j1 j2 jr

i1 i1 ir ir+1

. . .

Greedy:

OPT: jr+1

job jr+1 starts after ir ends,
so included in min(…)

4.1 Interval Partitioning

Proof Technique 2: “Structural”

24

Interval Partitioning

Interval partitioning.
! Lecture j starts at sj and finishes at fj.
! Goal: find minimum number of classrooms to schedule all lectures so

that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

Room 1

Room 2

Room 3

Room 4

25

Vertices = classes;
edges = conflicting class pairs;
different colors = different assigned rooms

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

C

B

A

E

D G

F

J

H

I

Interval Partitioning as Interval Graph Coloring

Note: graph coloring is very
hard in general, but graphs
corresponding to interval
intersections are a much

simpler special
case.

Room 1

Room 2

Room 3

Room 4

26

Interval Partitioning

Interval partitioning.
! Lecture j starts at sj and finishes at fj.
! Goal: find minimum number of classrooms to schedule all lectures so

that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

c

a e

f

g i

j

3 3:30 4 4:30

d

b

h

27

Interval Scheduling: Greedy Algorithms

Greedy template. Consider lectures in some order. If next lecture fits in
the schedule we have, add it to one of the classrooms, otherwise open a
new classroom.

[Earliest start time] Consider lectures in ascending order of start time
sj.

[Earliest finish time] Consider lectures in ascending order of finish time
fj.

[Shortest interval] Consider lectures in ascending order of interval
length fj - sj.

[Fewest conflicts] For each lecture, count the number of conflicting
lectures cj. Schedule in ascending order of conflicts cj.

28

Interval Scheduling: Greedy Algorithms

counterexample for fewest conflicts

1

2

3

counterexample for shortest interval

1

2

3

counterexample for earliest finish time

1

2

3

29

Interval Scheduling: Greedy Algorithms

Greedy template. Consider lectures in some order. If next lecture fits in
the schedule we have, add it to one of the classrooms, otherwise open a
new classroom.

[Earliest start time] Consider lectures in ascending order of start time
sj.

[Earliest finish time] Consider lectures in ascending order of finish time
fj.

[Shortest interval] Consider lectures in ascending order of interval
length fj - sj.

[Fewest conflicts] For each lecture, count the number of conflicting
lectures cj. Schedule in ascending order of conflicts cj.

30

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:
assign lecture to any compatible classroom.

Implementation. O(n log n).
! For each classroom k, maintain the finish time of the last job added.
! Keep the classrooms in a priority queue.

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn.
d= 0

for j = 1 to n {
if (lect j is compatible with some classroom k, 1≤k≤d)

schedule lecture j in classroom k
else

allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d = d + 1

}

number of allocated classrooms

Implementation? Run-time?
Exercises

31

Interval Partitioning

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

d

g

f

i

j

3 3:30 4 4:30

e

32

Interval Partitioning

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

d

g

f

i

j

3 3:30 4 4:30

Room 1

e

33

Interval Partitioning

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

d

g

f

i

j

3 3:30 4 4:30

Room 1

e

34

Interval Partitioning

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

d

g

f

i

j

3 3:30 4 4:30

Room 1

Room 2

e

35

Interval Partitioning

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

e

d

g

f

i

j

3 3:30 4 4:30

Room 1

Room 2

36

Interval Partitioning

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

ed

g

f

i

j

3 3:30 4 4:30

Room 1

Room 2

37

Interval Partitioning

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

ed

g

f

i

j

3 3:30 4 4:30

Room 1

Room 2

38

Interval Partitioning

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

ed

g

f

i

j

3 3:30 4 4:30

Room 1

Room 2

Room 3

39

Interval Partitioning

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

hc

b

ed

g

f

i

j

3 3:30 4 4:30

Room 1

Room 2

Room 3

40

Interval Partitioning

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

hc

b

ed

g

f

i

j

3 3:30 4 4:30

Room 1

Room 2

Room 3

41

Interval Partitioning

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

hc

b

ed

g

f i

j

3 3:30 4 4:30

Room 1

Room 2

Room 3

42

Interval Partitioning: A “Structural” Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that
contain any given time.

Key observation. Number of classrooms needed ≥ depth.

Ex: Depth of schedule below = 3 ⇒ schedule below is optimal.

Q. Does there always exist a schedule equal to depth of intervals?

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

no collisions at ends

43

Interval Partitioning: Greedy Analysis

Theorem. Greedy algorithm is optimal.
Pf (exploit structural property).
! Let d = number of classrooms that the greedy algorithm allocates.
! Classroom d is opened because we needed to schedule a job, say j,

that is incompatible with all d-1 previously used classrooms.
! Since we sorted by start time, all these incompatibilities are caused

by lectures that start no later than sj.
! Thus, we have d lectures overlapping at time sj , i.e. depth ≥ d
! “Key observation” all schedules use ≥ depth classrooms, so

d = depth and greedy is optimal ▪

