Plan

Dynamic Programming

Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

Areas.

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, systems,

Some famous dynamic programming algorithms.

- Viterbi for hidden Markov models.
- Unix diff for comparing two files.
- Smith-Waterman for sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.

Dynamic Programming Mantra

- Express OPT in terms of OPT for smaller problems [just like divide and conquer]
- Figure out a clever order to evaluate all sub-problems to minimize redundancy [pictures help!]

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.

- Job j starts at s_{j}, finishes at f_{j}, and has weight or value v_{j}.
- Two jobs compatible if they don' \dagger overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$.

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Ex: $p(8)=5, p(7)=3, p(2)=0$.

j	$p(j)$
0	-
1	0
2	0
3	0
4	1
5	0
6	2
7	3
8	5

Using Subproblems

Notation. OPT $(\mathrm{j})=$ value of optimal solution to the problem consisting of job requests $1,2, \ldots, j$.

- Case 1: OPT selects job j.
- can't use incompatible jobs $\{p(j)+1, p(j)+2, \ldots, j-1\}$
- must include optimal solution to problem consisting of remaining compatible jobs $1,2, \ldots, p(j)$
- Case 2: OPT does not select job j.
- must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

$$
\operatorname{OPT}(j)=\left\{\begin{array}{cl}
0 & \text { if } \mathrm{j}=0 \\
\max \left\{v_{j}+\operatorname{OPT}(p(j)), O P T(j-1)\right\} & \text { otherwise }
\end{array}\right.
$$

Recursive Algorithm

```
Input: n, s}\mp@subsup{\mathbf{s}}{1}{},\ldots,\mp@subsup{\mathbf{S}}{\textrm{n}}{},\mp@subsup{\mathbf{f}}{1}{},\ldots,\mp@subsup{\mathbf{f}}{\textrm{n}}{},\mp@subsup{\textrm{V}}{1}{},\ldots,\mp@subsup{\mathbf{v}}{\textrm{n}}{
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots{\mp@subsup{f}{n}{}
Compute p(1), p(2), ..., p(n)
Compute-Opt(j) {
    if (j = 0)
        return 0
    else
        return max (vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```


Weighted Interval Scheduling: Recursive Algorithm

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

```
Input: n, s}\mp@subsup{\mathbf{s}}{1}{},\ldots,\mp@subsup{\mathbf{S}}{\textrm{n}}{},\mp@subsup{\mathbf{f}}{1}{},\ldots,\mp@subsup{\mathbf{f}}{\textrm{n}}{},\mp@subsup{\textrm{V}}{1}{},\ldots,\mp@subsup{\mathbf{v}}{\textrm{n}}{
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots,..{\mp@subsup{f}{n}{}
Compute p(1), p(2), .., p(n)
Iterative-Compute-Opt {
    M[0] = 0
    for j = 1 to n
        M[j] = max(vij +M[p(j)], M[j-1])
}
Output M[n]
```

Claim: $M[j]$ is value of optimal solution for jobs $1 . . j$ Timing: $p(j$)'s can be computed in $O(n \log n)$ time. Main loop is $O(n)$; sorting is $O(n \log n)$

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $i<j$ such that $j o b i$ is compatible with j.

Ex: $p(8)=5, p(7)=3, p(2)=0$.

j	$v j$	$p j$	optj
0		-	0
1	3	0	
2	4	0	
3	1	0	
4	3	1	
5	4	0	
6	3	2	
7	2	3	
8	4	5	

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $i<j$ such that $j o b i$ is compatible with j.

Ex: $p(8)=5, p(7)=3, p(2)=0$.

j	$v j$	$p j$	optj
0	0	-	0
1	3	0	3
2	4	0	
3	1	0	
4	3	1	
5	4	0	
6	3	2	
7	2	3	
8	4	5	

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Ex: $p(8)=5, p(7)=3, p(2)=0$.

j	$v j$	pj	optj
0	0		0
	3	0	3
2	4	0	
3	I	0	
4	3	1	
5	4	0	
6	3	2	
7	2	3	
8	4	5	

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Ex: $p(8)=5, p(7)=3, p(2)=0$.

j	vj	pj	optj
0	0		0
	3	0	3
2	4	0	4
3	I	0	
4	3	l	
5	4	0	
6	3	2	
7	2	3	
8	4	5	

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Ex: $p(8)=5, p(7)=3, p(2)=0$.

j	vj	pj	optj
0	0	-	0
	3	0	3
2	4	0	4
3	l	0	
4	3	l	
5	4	0	
6	3	2	
7	2	3	
8	4	5	

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Ex: $p(8)=5, p(7)=3, p(2)=0$.

j	vj	pj	optj
0	0	-	0
	3	0	3
2	4	0	4
3	l	0	4
4	3	l	
5	4	0	
6	3	2	
7	2	3	
8	4	5	

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Ex: $p(8)=5, p(7)=3, p(2)=0$.

j	$v j$	$p j$	optj
0	0	-	0
	3	0	3
2	4	0	4
3		0	4
4	3	1	6
5	4	0	
6	3	2	
7	2	3	
8	4	5	

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Ex: $p(8)=5, p(7)=3, p(2)=0$.

j	$v j$	$p j$	optj
0	0		0
I	3	0	3
2	4	0	4
3	1	0	4
4	3		6
5	4	0	6
6	3	2	
7	2	3	
8	4	5	

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Ex: $p(8)=5, p(7)=3, p(2)=0$.

j	$v j$	$p j$	optj
0	0	-	0
I	3	0	3
2	4	0	4
3	I	0	4
4	3	1	6
5	4	0	6
6	3	2	7
7	2	3	
8	4	5	

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Ex: $p(8)=5, p(7)=3, p(2)=0$.

j	$v j$	$p j$	optj
0	0	-	0
I	3	0	3
2	4	0	4
3	1	0	4
4	3	1	6
5	4	0	6
6	3	2	7
7	2	3	7
8	4	5	

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Ex: $p(8)=5, p(7)=3, p(2)=0$.

j	$v j$	pj	optj
0	0	-	0
I	3	0	3
2	4	0	4
3	1	0	4
4	3	1	6
5	4	0	6
6	3	2	7
7	2	3	7
8	4	5	10

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $i<j$ such that $j o b i$ is compatible with j.

Ex: $p(8)=5, p(7)=3, p(2)=0$.

j	$v j$	pj	optj
0	0	-	0
I	3	0	3
2	4	0	4
3	1	0	4
4	3	1	6
5	4	0	6
6	3	2	7
7	2	3	7
8	4	5	10

Knapsack Problem

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_{i}>0$ kilograms and has value $v_{i}>0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: $\{3,4\}$ has value 40 .

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Greedy: repeatedly add item with maximum ratio v_{i} / w_{i}.
Ex: $\{5,2,1\}$ achieves only value $=35 \Rightarrow$ greedy not optimal.

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

- Case 1: OPT does not select item i.
- OPT selects best of $\{1,2, \ldots, i-1\}$
- Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have to reject other items
- without knowing what other items were selected before i, we don' \dagger even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. $\operatorname{OPT}(i, w)=\max$ profit subset of items $1, \ldots, i$ with weight limit w.

- Case 1: OPT does not select item i.
- OPT selects best of $\{1,2, \ldots, i-1\}$ using weight limit w
- Case 2: OPT selects item i.
- new weight limit $=w-w_{i}$
- OPT selects best of $\{1,2, \ldots, i-1\}$ using this new weight limit

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

```
Input: n, w
for w = 0 to W
    M[0, w] = 0
for i = 1 to n
    for w = 1 to W
        if (wi
        M[i, w] = M[i-1,w]
        else
        M[i,w] = max {M[i-1,w], vi
return M[n, W]
```

Knapsack Algorithm

$$
\longrightarrow W+1
$$

$$
W=11
$$

```
if ( }\mp@subsup{w}{i}{\prime}>w
    M[i, w] = M[i-1, w]
else
    M[i, w] = max {M[i-1,w], vi
```

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Algorithm

$$
\ldots \quad W+1
$$

$$
W=11
$$

```
if ( }\mp@subsup{w}{i}{\prime}>>w
    M[i, w] = M[i-1, w]
else
    M[i, w] = max {M[i-1, w], vi
```

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Algorithm

$$
\longrightarrow W+1
$$

$$
W=11
$$

```
if ( }\mp@subsup{w}{i}{\prime}>>w
    M[i, w] = M[i-1, w]
else
    M[i, w] = max {M[i-1,w], vi
```

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Algorithm

$$
\longrightarrow W+1
$$

$$
W=11
$$

```
if ( }\mp@subsup{w}{i}{}>>w
    M[i, w] = M[i-1, w]
else
    M[i, w] = max {M[i-1,w], vi
```

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Algorithm

$$
\longrightarrow W+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	\emptyset	0	0	0	0	0	0	0	0	0	0	0	0
	\{1\}	0	1	1	1	1	1	1	1	1	1	1	1
$n+1$	\{1,2 \}	0	1	6	7	7	7	7	7	7	7	7	7
	\{1, 2, 3\}	0	1	6	7	7							
	$\{1,2,3,4\}$												
	$\{1,2,3,4,5\}$												

$$
W=11
$$

```
if ( }\mp@subsup{w}{i}{}>>w
    M[i, w] = M[i-1, w]
else
    M[i, w] = max {M[i-1,w], vi
```

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Algorithm

$$
\longrightarrow W+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	\emptyset	0	0	0	0	0	0	0	0	0	0	0	0
	\{1\}	0	1	1	1	1	1	1	1	1	1	1	1
+1	\{1, 2 \}	0	1	6	7	7	7	7	7	7	7	7	7
	\{1,2,3\}	0	1	6	7	7	18						
	$\{1,2,3,4\}$												
	$\{1,2,3,4,5\}$												

$$
W=11
$$

```
if ( }\mp@subsup{w}{i}{}>>w
    M[i, w] = M[i-1, w]
else
    M[i, w] = max {M[i-1,w], vi
```

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Algorithm

$$
\longrightarrow W+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	\emptyset	0	0	0	0	0	0	0	0	0	0	0	0
	\{1\}	0	1	1	1	1	1	1	1	1	1	1	1
+1	\{1, 2 \}	0	1	6	7	7	7	7	7	7	7	7	7
	\{1,2,3\}	0	1	6	7	7	18						
	$\{1,2,3,4\}$												
	$\{1,2,3,4,5\}$												

$$
W=11
$$

```
if ( }\mp@subsup{w}{i}{\prime}>>w
    M[i, w] = M[i-1, w]
else
    M[i, w] = max {M[i-1,w], vi
```

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Algorithm

$$
\longrightarrow W+1
$$

$$
W=11
$$

```
if ( }\mp@subsup{w}{i}{}>>w
    M[i, w] = M[i-1, w]
else
    M[i, w] = max {M[i-1,w], vi
```

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Algorithm

$$
\longrightarrow \quad w+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	\emptyset	0	0	0	0	0	0	0	0	0	0	0	0
	\{1\}	0	1	1	1	1	1	1	1	1	1	1	1
$n+1$	\{1,2 \}	0	1	6	7	7	7	7	7	7	7	7	7
	\{1,2,3\}	0	1	6	7	7	18	19	24	25	25	25	25
	$\{1,2,3,4\}$	0	1	6	7	7	18	22	24				
	$\{1,2,3,4,5\}$												

```
if ( }\mp@subsup{w}{i}{\prime}>>w
    M[i, w] = M[i-1,w]
else
    M[i, w] = max {M[i-1,w], vi
```

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Algorithm

$$
\longrightarrow \quad w+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	\emptyset	0	0	0	0	0	0	0	0	0	0	0	0
	\{1\}	0	1	1	1	1	1	1	1	1	1	1	1
$n+1$	\{1,2 \}	0	1	6	7	7	7	7	7	7	7	7	7
	\{ $1,2,3\}$	0	1	6	7	7	18	19	24	25	25	25	25
	$\{1,2,3,4\}$	0	1	6	7	7	18	22	24	28			
	$\{1,2,3,4,5\}$												

```
if ( }\mp@subsup{w}{i}{\prime}>>w
    M[i, w] = M[i-1,w]
else
    M[i, w] = max {M[i-1,w], vi
```

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Algorithm

$$
\longrightarrow \quad w+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	\emptyset	0	0	0	0	0	0	0	0	0	0	0	0
	\{1\}	0	1	1	1	1	1	1	1	1	1	1	1
1	\{1,2 \}	0	1	6	7	7	7	7	7	7	7	7	7
	\{1,2,3\}	0	1	6	7	7	18	19	24	25	25	25	25
	$\{1,2,3,4\}$	0	1	6	7	7	18	22	24	28			
	$\{1,2,3,4,5\}$												

```
if ( }\mp@subsup{w}{i}{\prime}>>w
    M[i, w] = M[i-1,w]
else
    M[i, w] = max {M[i-1,w], vi
```

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Algorithm

$$
\longrightarrow \quad w+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	\emptyset	0	0	0	0	0	0	0	0	0	0	0	0
	\{1\}	0	1	1	1	1	1	1	1	1	1	1	1
1	\{1,2 \}	0	1	6	7	7	7	7	7	7	7	7	7
	\{1,2,3\}	0	1	6	7	7	18	19	24	25	25	25	25
	$\{1,2,3,4\}$	0	1	6	7	7	18	22	24	28	29		
	$\{1,2,3,4,5\}$												

```
if ( }\mp@subsup{w}{i}{\prime}>>w
    M[i, w] = M[i-1,w]
else
    M[i, w] = max {M[i-1,w], vi
```

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Algorithm

$$
\longrightarrow W+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	\emptyset	0	0	0	0	0	0	0	0	0	0	0	0
	\{1\}	0	1	1	1	1	1	1	1	1	1	1	1
$n+1$	\{1,2\}	0	1	6	7	7	7	7	7	7	7	7	7
	\{1, 2, 3\}	0	1	6	7	7	18	19	24	25	25	25	25
	$\{1,2,3,4\}$	0	1	6	7	7	18	22	24	28	29	29	40
	$\{1,2,3,4,5\}$	0	1	6	7	7	18	22	28	29	34	34	40

```
OPT: {4,3}
value =22+18=40
\[
W=11
\]
```

```
```

if (wi > w)

```
```

if (wi > w)
M[i, w] = M[i-1, w]
M[i, w] = M[i-1, w]
else
else
M[i, w] = max {M[i-1,w], vi

```
```

 M[i, w] = max {M[i-1,w], vi
    ```
```

| Item | Value | Weight |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 2 | 6 | 2 |
| 3 | 18 | 5 |
| 4 | 22 | 6 |
| 5 | 28 | 7 |

Knapsack Problem: Running Time

Running time. O(n W).

- Not polynomial in input size!
. "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm. There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum.

6.5 RNA Secondary Structure

RNA Secondary Structure

RNA. String $B=b_{1} b_{2} \ldots b_{n}$ over alphabet $\{A, C, G, U\}$.

Secondary structure. RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.

Ex: gucgauugagcgaiuguaicaicgugccuacggcgaga

RNA Secondary Structure

Secondary structure. A set of pairs $S=\left\{\left(b_{i}, b_{j}\right)\right\}$ that satisfy:

- [Watson-Crick.]
- S is a matching and
- each pair in S is a Watson-Crick pair: A-U, U-A, C-G, or G-C.
- [No sharp turns.] The ends of each pair are separated by at least 4 intervening bases. If $\left(b_{i}, b_{j}\right)$ in S, then $i<j-4$.
- [Non-crossing.] If $\left(b_{i}, b_{j}\right)$ and $\left(b_{k}, b_{1}\right)$ are two pairs in S, then we cannot have $\mathrm{i}<\mathrm{k}<\mathrm{j}<\mathrm{l}$.

Free energy. Usual hypothesis is that an RNA molecule will form the secondary structure with the optimum total free energy.
approximate by number of base pairs
Goal. Given an RNA molecule $B=b_{1} b_{2} \ldots b_{n}$, find a secondary structure S that maximizes the number of base pairs.

RNA Secondary Structure: Examples

Examples.

ok

sharp turn

crossing

RNA Secondary Structure: Subproblems

First attempt. OPT $(\mathrm{j})=$ maximum number of base pairs in a secondary structure of the substring $b_{1} b_{2} \ldots b_{j}$.

Difficulty. Results in two sub-problems.

- Finding secondary structure in: $b_{1} b_{2} \ldots b_{t-1}$.
$\longleftarrow \operatorname{OPT}(\dagger-1)$
- Finding secondary structure in: $b_{t+1} b_{++2} \ldots b_{n-1}$.
\longleftarrow need more sub-problems

Dynamic Programming Over Intervals

Notation. OPT $(i, j)=$ maximum number of base pairs in a secondary structure of the substring $b_{i} b_{i+1} \ldots b_{j}$.

- Case 1. If $4>\mathrm{j}-\mathrm{i}$.
- OPT $(i, j)=0$ by no-sharp turns condition.
- Case 2. Base b_{j} is not involved in a pair.
- $\operatorname{OPT}(i, j)=\operatorname{OPT}(i, j-1)$
- Case 3. Base b_{j} pairs with b_{\dagger} for some $j-\dagger>4, i<=\dagger$
- non-crossing constraint decouples resulting sub-problems
- $\operatorname{OPT}(i, j)=1+\max _{+}\{\operatorname{OPT}(i, t-1)+\operatorname{OPT}(\dagger+1, j-1)\}$
take max over \dagger such that $\mathrm{i}<=\dagger<\mathrm{j}-4$ and b_{+}and b_{j} are Watson-Crick complements

Remark. Same core idea in CKY algorithm to parse context-free grammars.

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?
A. Do shortest intervals first.

```
RNA ( }\mp@subsup{b}{1}{},\ldots,\mp@subsup{b}{n}{})
    for k = 5, 6, ..., n-1
        for i = 1, 2, ..., n-k
        j = i + k
        Compute M[i, j]
    return M[1, n] using recurrence
}
```


Running time. $O\left(n^{3}\right)$.

Dynamic Programming Mantra

- Express OPT in terms of OPT for smaller problems [like divide and conquer]
- Figure out a clever order to evaluate all sub-problems to minimize redundancy [pictures help!]

6.6 Sequence Alignment

String Similarity

How similar are two strings?

- ocurrance
- occurrence

5 mismatches, 1 gap

0 mismatches, 3 gaps

Edit Distance

Applications.

- Basis for Unix diff.
- Speech recognition.
- Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Cost = \# of gaps and mismatches.

| C | T | G | A | C | C | T | A | C | C | T |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C | C | T | G | A | C | T | A | C | A | T |

Cost: 5

Cost: 3

Sequence Alignment

Goal: Given two strings $X=x_{1} x_{2} \ldots x_{m}$ and $Y=y_{1} y_{2} \ldots y_{n}$ find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs $x_{i}-y_{j}$ such that each item occurs in at most one pair and no crossings.

Def. The pair $x_{i}-y_{j}$ and $x_{i^{\prime}}-y_{j^{\prime}}$ cross if $i\left\langle i^{\prime}\right.$, but $\left.j\right\rangle j^{\prime}$.
Cost of M: \# mismatches and gaps.

Ex: ctaccg vs. tacatg.
Sol: $M=x_{2}-y_{1}, x_{3}-y_{2}, x_{4}-y_{3}, x_{5}-y_{4}, x_{6}-y_{6}$.

Sequence Alignment: Problem Structure

Def. $\operatorname{OPT}(i, j)=\min$ cost of aligning strings $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}$.

Sequence Alignment: Problem Structure

Def. $\operatorname{OPT}(i, j)=\min$ cost of aligning strings $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}$.

- Case 1: OPT matches $x_{i}-y_{j}$.
- pay mismatch for $x_{i}-y_{j}+\min$ cost of aligning two strings $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j-1}$
- Case 2a: OPT leaves x_{i} unmatched.
- pay gap for x_{i} and min cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j}$
- Case 2b: OPT leaves y_{j} unmatched.
- pay gap for y_{j} and min cost of aligning $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j-1}$

Sequence Alignment: Algorithm


```
    for i = 0 to m
        M[0, i] = i
    for j = 0 to n
        M[j, O] = j
    for i = 1 to m
        for j = 1 to n
            M[i, j] = min(1xi,yj + M[i-1, j-1],
                        1 + M[i-1, j],
                        1 + M[i, j-1])
    return M[m, n]
}
```

Analysis. O(mn) time and space.
English words or sentences: $m, n \sim 10$.
Computational biology: $m=n=100,000$. 10 billions ops OK, but 10GB array?

Dynamic Programming Summary

Recipe.

- Characterize structure of problem.
- Recursively define value of optimal solution.
- Compute value of optimal solution.
- Construct optimal solution from computed information.

Dynamic programming techniques.

- Binary choice: weighted interval scheduling.
- Adding a new variable: knapsack.
- Dynamic programming over intervals: RNA secondary structure.

CKY parsing algorithm for context-free grammar has similar structure

Top-down vs. bottom-up: different people have different intuitions.

