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Does every problem have efficient algorithms?

Halting Problem: Given program code, output whether program halts or 
not.

Theorem [Godel]: Halting cannot be solved by any algorithm.
Theorem: Integer Equations cannot be solved by any algorithm.
…

What about problems that have algorithms? Must they have efficient 
algorithms?

Theorem: There are problems that can be solved in exponential time, 
but not in polynomial time.

OK, but what about Set Cover, Vertex Cover, Shortest Spanning Path –
all have brute force algorithms, but do they have efficient algorithms?
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Decision Problems

Decision problem: Problems with “yes” or “no” answers.
Does a given set system have a set cover of size at most k?
Does a given graph have a vertex cover of size at most k?
Does a number have a non-trivial factorization?
Does a given graph have an MST of cost at most k?
Does a given flow network have a min-cut of capacity at most k?
Does a given sudoku problem have a solution?

Polynomial time.  Algorithm A runs in poly-time if for every string x, 
A(x) terminates in at most p(|x|) "steps", where p is some polynomial. 

P: The class of decision problems that can be solved in polynomial time.

PRIMES:  X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, …. }. Is input a prime?

Theorem  [Agrawal-Kayal-Saxena, 2002] PRIMES is in P.

length of x
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NP

Certification algorithm intuition.
! Certifier doesn't determine whether answer is “yes”  on its own;

rather, it checks a proposed proof t that answer is “yes”.

Def.  Algorithm C(x, t) is a certifier for problem X if for every string x, 
the answer is “yes” iff there exists a string t such that C(x, t) = yes.

NP.  Decision problems for which there exists a poly-time certifier.

Remark.  NP stands for nondeterministic polynomial-time.

C(x, t) is a poly-time algorithm and
|t| ≤ p(|x|) for some polynomial p.

"certificate" or "witness"
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Certifiers and Certificates:  Composite

COMPOSITES.  Given an integer x, is x composite?

Certificate.  A nontrivial factor t of x.  Note that such a certificate 
exists iff x is composite.  Moreover |t| ≤ |s|.

Certifier.  

Instance.  x = 437,669.
Certificate.  t = 541 or 809.

Conclusion.  COMPOSITES is in NP.

437,669 = 541 X 809

boolean C(x, t) {
if (t = 1 or t = x)

return false
else if (x is a multiple of t)

return true
else 

return false
}
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Certifiers and Certificates:  3-Satisfiability

3SAT. Given a 3-CNF formula, is there a satisfying assignment?

Certificate.  An assignment of truth values to the n boolean variables.

Certifier.  Check that each clause has at least one true literal.

Ex.

Conclusion.  3SAT is in NP.

€ 

x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )  ∧ x1  ∨ x3  ∨ x4( )

€ 

x1 =1, x2 =1, x3 = 0, x4 =1

instance s

certificate t
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Certifiers and Certificates:  Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a 
simple cycle C that visits every node?

Certificate.  A permutation of the n nodes.

Certifier.  Check that the permutation contains each node in V exactly 
once, and that there is an edge between each pair of adjacent nodes in 
the permutation.

Conclusion.  HAM-CYCLE is in NP.

Instance x certificate t



MIN-CUT. Given a flow network, and a number k, does there exist a 
min-cut of capacity at most k?

Certificate.  A min-cut T.

Certifier.  Check that the capacity of the min-cut is at most T.

Conclusion.  MIN-CUT is in NP.
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Certifiers and Certificates:  Min-Cut



MIN-CUT. Given a flow network, and a number k, does there exist a 
min-cut of capacity at most k?

Certificate.  The empty string.

Certifier. Compute the min-cut of the graph and check whether its 
capacity is at most k.

Conclusion.  MIN-CUT is in NP.
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Certifiers and Certificates:  Min-Cut
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Examples of NP Problems

Eg: Does a given set system have a set cover of size at most k?
Certificate: A set cover of size at most k

Does a given graph have a vertex cover of size at most k?
Certificate: A vertex cover of size at most k.

Does a number have a non-trivial factorization?
Certificate: A non-trivial factorization

Does a given graph have an MST of cost at most k?
Certificate:  An MST of cost at most k

Does a given flow network have a min-cut of capacity at most k?
Certificate: A min-cut of capacity at most k

Does a given sudoku problem have a solution?
Certificate: A valid solution.
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P, NP, EXP

P.  Decision problems for which there is a poly-time algorithm.
EXP.  Decision problems for which there is an exponential-time algorithm.
NP.  Decision problems for which there is a poly-time certifier.

Claim.  P  ⊆ NP.
Pf.  Consider any problem X in P.
! By definition, there exists a poly-time algorithm A(x) that solves X.
! Certificate: t = empty string, certifier C(x, t) = A(x). ▪

Claim.  NP  ⊆ EXP.
Pf.  Consider any problem X in NP.
! By definition, there exists a poly-time certifier C(x, t) for X.
! To solve input x, run C(x, t) on all strings t with |t| ≤ p(|x|) (running 

time of C).
! Return yes, if C(x, t) returns yes for any of these. ▪
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The Main Question:  P Versus NP

Does P = NP?  [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
! Is the decision problem as easy as the certification problem?
! Clay $1 million prize.

If yes:  Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …
If no:  No efficient algorithms possible for 3-COLOR, TSP, SAT, …

EXP NP

P

If  P ≠ NP If  P = NP

EXP
P = NP



NP-Completeness

Punchline: If you find a way to solve sudoku in polynomial time, 
you will solve factoring in polynomial time!
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NP-Completeness

Punchline: If you find a way to solve sudoku in polynomial time, 
you will solve all machine learning problems in polynomial time!



NP-Completeness

Punchline: If you find a way to solve sudoku in polynomial time, 
you will solve every problem in NP in polynomial time!
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NP-Completeness

Def.  Problem X polynomial reduces to problem Y  (X ≤p Y) if arbitrary 
instances of problem X can be solved using:
! Polynomial number of standard computational steps, plus
! Polynomial number of calls to subroutine that solves problem Y.

NP-complete Problem.  A problem Y in NP with the property that for 
every problem X in NP, X ≤ p Y.

Theorem.  Suppose Y is an NP-complete problem. Then Y is solvable in 
poly-time iff P = NP.
Pf.  ⇐ If P = NP then Y can be solved in poly-time since Y is in NP.
Pf.  ⇒ Suppose Y can be solved in poly-time.
! Let X be any problem in NP.  Since X ≤p Y, we can solve X in

poly-time. This implies NP  ⊆ P.
! We already know P  ⊆ NP. Thus P = NP. ▪

Fundamental question.  Do there exist "natural" NP-complete problems?



PROGRAM-SAT.  Given a line program on inputs x=x1,x2,…,xn is there a way 
to set the inputs so that the output is 1?

l1 = x1 AND x2 ;

l2 = x3 OR x5 ;

l3 = NOT x6 AND x8;

l4 = l1 XOR l3 ;

l5 = l2 AND x4 ;

l6 = NOT l4 OR l2 ;

…
lm-2 = l17 AND l25 ;

lm-1 = x1 XOR x2 ;

lm = x1 XOR lm-2 ;

OUTPUT lm

Program Satisfiability
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The "First" NP-Complete Problem

Theorem.  PROGRAM-SAT is NP-complete. [Cook 1971, Levin 1973]
Pf.  (sketch)
! Any polynomial time algorithm can be compiled into a poly-size program.
! If problem X has poly-time certifier C(x, t), to solve X, need to know if 

there exists a certificate t such that C(x, t) = yes.
! Let K(t) be poly-size program computing C(x, t)
! Program K(t) is satisfiable iff X(x) = yes.
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Establishing NP-Completeness

Recipe to establish NP-completeness of problem Y.
! Step 1.  Show that Y is in NP.
! Step 2.  Choose an NP-complete problem X.
! Step 3.  Prove that X ≤ p Y.

Justification.  If X is an NP-complete problem, and Y is a problem in NP 
with the property that X ≤ P Y then Y is NP-complete.

Pf.  Let W be any problem in NP.  Then W  ≤ P  X   ≤ P Y.
! By transitivity, W ≤ P Y. 
! Hence Y is NP-complete.  ▪ by assumptionby definition of

NP-complete



Theorem.  3-SAT is NP-complete.
Pf.  Suffices to show that PROGRAM-SAT ≤ P 3-SAT since 3-SAT is in NP.
! Let K be any line program.
! Create a 3-SAT variable li for each line i.
! Make variables compute correct values at each node:

– li = l4 AND x5  add 4 clauses: (li OR not l4 OR not x5) AND (li OR 
not l4 OR x5) AND (li OR l4 OR not x5) AND (not li OR l4 OR x5)

! 3SAT formula is satisfiable if and only if K is satisfiable.    

30

3-SAT is NP-Complete
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Observation.  All problems below are NP-complete and polynomial 
reduce to one another!

PROGRAM-SAT

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

3-SAT reduces to 

INDEPENDENT SET

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

MAX-CUTPLANAR 3-COLOR

SET COVER

NP-Completeness

by definition of NP-completeness
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More NP-Complete Computational Problems

Aerospace engineering:  optimal mesh partitioning for finite elements.
Biology:  protein folding.
Chemical engineering:  heat exchanger network synthesis.
Civil engineering:  equilibrium of urban traffic flow.
Economics:  computation of arbitrage in financial markets with friction.
Electrical engineering:  VLSI layout. 
Environmental engineering:  optimal placement of contaminant sensors.
Financial engineering:  find minimum risk portfolio of given return.
Game theory:  find Nash equilibrium that maximizes social welfare.
Genomics:  phylogeny reconstruction.
Mechanical engineering:  structure of turbulence in sheared flows.
Medicine:  reconstructing 3-D shape from biplane angiocardiogram.
Operations research:  optimal resource allocation. 
Physics:  partition function of 3-D Ising model in statistical mechanics.
Politics:  Shapley-Shubik voting power.
Pop culture:  Minesweeper consistency.
Statistics:  optimal experimental design.


