
SURVEY

Finding an efficient
method to solve
SuDoku puzzles is:

1: A waste of time
2: A decent spare time activity
3: A fundamental problem in computer science

SURVEY

Finding an efficient
method to solve
SuDoku puzzles is:

1: A waste of time
2: A decent spare time activity
3: A fundamental problem in computer science

Does every problem have efficient algorithms?

Halting Problem: Given program code, output whether program halts or
not.

Theorem [Godel]: Halting cannot be solved by any algorithm.
Theorem: Integer Equations cannot be solved by any algorithm.
…

What about problems that have algorithms? Must they have efficient
algorithms?

Theorem: There are problems that can be solved in exponential time,
but not in polynomial time.

OK, but what about Set Cover, Vertex Cover, Shortest Spanning Path –
all have brute force algorithms, but do they have efficient algorithms?

4

5

Decision Problems

Decision problem: Problems with “yes” or “no” answers.
Does a given set system have a set cover of size at most k?
Does a given graph have a vertex cover of size at most k?
Does a number have a non-trivial factorization?
Does a given graph have an MST of cost at most k?
Does a given flow network have a min-cut of capacity at most k?
Does a given sudoku problem have a solution?

Polynomial time. Algorithm A runs in poly-time if for every string x,
A(x) terminates in at most p(|x|) "steps", where p is some polynomial.

P: The class of decision problems that can be solved in polynomial time.

PRIMES: X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, …. }. Is input a prime?

Theorem [Agrawal-Kayal-Saxena, 2002] PRIMES is in P.

length of x

7

NP

Certification algorithm intuition.
! Certifier doesn't determine whether answer is “yes” on its own;

rather, it checks a proposed proof t that answer is “yes”.

Def. Algorithm C(x, t) is a certifier for problem X if for every string x,
the answer is “yes” iff there exists a string t such that C(x, t) = yes.

NP. Decision problems for which there exists a poly-time certifier.

Remark. NP stands for nondeterministic polynomial-time.

C(x, t) is a poly-time algorithm and
|t| ≤ p(|x|) for some polynomial p.

"certificate" or "witness"

8

Certifiers and Certificates: Composite

COMPOSITES. Given an integer x, is x composite?

Certificate. A nontrivial factor t of x. Note that such a certificate
exists iff x is composite. Moreover |t| ≤ |s|.

Certifier.

Instance. x = 437,669.
Certificate. t = 541 or 809.

Conclusion. COMPOSITES is in NP.

437,669 = 541 X 809

boolean C(x, t) {
if (t = 1 or t = x)

return false
else if (x is a multiple of t)

return true
else

return false
}

9

Certifiers and Certificates: 3-Satisfiability

3SAT. Given a 3-CNF formula, is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause has at least one true literal.

Ex.

Conclusion. 3SAT is in NP.

€

x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4() ∧ x1 ∨ x3 ∨ x4()

€

x1 =1, x2 =1, x3 = 0, x4 =1

instance s

certificate t

10

Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a
simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly
once, and that there is an edge between each pair of adjacent nodes in
the permutation.

Conclusion. HAM-CYCLE is in NP.

Instance x certificate t

MIN-CUT. Given a flow network, and a number k, does there exist a
min-cut of capacity at most k?

Certificate. A min-cut T.

Certifier. Check that the capacity of the min-cut is at most T.

Conclusion. MIN-CUT is in NP.

11

Certifiers and Certificates: Min-Cut

MIN-CUT. Given a flow network, and a number k, does there exist a
min-cut of capacity at most k?

Certificate. The empty string.

Certifier. Compute the min-cut of the graph and check whether its
capacity is at most k.

Conclusion. MIN-CUT is in NP.

12

Certifiers and Certificates: Min-Cut

13

Examples of NP Problems

Eg: Does a given set system have a set cover of size at most k?
Certificate: A set cover of size at most k

Does a given graph have a vertex cover of size at most k?
Certificate: A vertex cover of size at most k.

Does a number have a non-trivial factorization?
Certificate: A non-trivial factorization

Does a given graph have an MST of cost at most k?
Certificate: An MST of cost at most k

Does a given flow network have a min-cut of capacity at most k?
Certificate: A min-cut of capacity at most k

Does a given sudoku problem have a solution?
Certificate: A valid solution.

14

P, NP, EXP

P. Decision problems for which there is a poly-time algorithm.
EXP. Decision problems for which there is an exponential-time algorithm.
NP. Decision problems for which there is a poly-time certifier.

Claim. P ⊆ NP.
Pf. Consider any problem X in P.
! By definition, there exists a poly-time algorithm A(x) that solves X.
! Certificate: t = empty string, certifier C(x, t) = A(x). ▪

Claim. NP ⊆ EXP.
Pf. Consider any problem X in NP.
! By definition, there exists a poly-time certifier C(x, t) for X.
! To solve input x, run C(x, t) on all strings t with |t| ≤ p(|x|) (running

time of C).
! Return yes, if C(x, t) returns yes for any of these. ▪

15

The Main Question: P Versus NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
! Is the decision problem as easy as the certification problem?
! Clay $1 million prize.

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …
If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, …

EXP NP

P

If P ≠ NP If P = NP

EXP
P = NP

NP-Completeness

Punchline: If you find a way to solve sudoku in polynomial time,
you will solve factoring in polynomial time!

NP-Completeness

Punchline: If you find a way to solve sudoku in polynomial time,
you will solve set cover in polynomial time!

NP-Completeness

Punchline: If you find a way to solve sudoku in polynomial time,
you will solve SAT in polynomial time!

NP-Completeness

Punchline: If you find a way to solve sudoku in polynomial time,
you will solve all machine learning problems in polynomial time!

NP-Completeness

Punchline: If you find a way to solve sudoku in polynomial time,
you will solve every problem in NP in polynomial time!

24

NP-Completeness

Def. Problem X polynomial reduces to problem Y (X ≤p Y) if arbitrary
instances of problem X can be solved using:
! Polynomial number of standard computational steps, plus
! Polynomial number of calls to subroutine that solves problem Y.

NP-complete Problem. A problem Y in NP with the property that for
every problem X in NP, X ≤ p Y.

Theorem. Suppose Y is an NP-complete problem. Then Y is solvable in
poly-time iff P = NP.
Pf. ⇐ If P = NP then Y can be solved in poly-time since Y is in NP.
Pf. ⇒ Suppose Y can be solved in poly-time.
! Let X be any problem in NP. Since X ≤p Y, we can solve X in

poly-time. This implies NP ⊆ P.
! We already know P ⊆ NP. Thus P = NP. ▪

Fundamental question. Do there exist "natural" NP-complete problems?

PROGRAM-SAT. Given a line program on inputs x=x1,x2,…,xn is there a way
to set the inputs so that the output is 1?

l1 = x1 AND x2 ;

l2 = x3 OR x5 ;

l3 = NOT x6 AND x8;

l4 = l1 XOR l3 ;

l5 = l2 AND x4 ;

l6 = NOT l4 OR l2 ;

…
lm-2 = l17 AND l25 ;

lm-1 = x1 XOR x2 ;

lm = x1 XOR lm-2 ;

OUTPUT lm

Program Satisfiability

27

The "First" NP-Complete Problem

Theorem. PROGRAM-SAT is NP-complete. [Cook 1971, Levin 1973]
Pf. (sketch)
! Any polynomial time algorithm can be compiled into a poly-size program.
! If problem X has poly-time certifier C(x, t), to solve X, need to know if

there exists a certificate t such that C(x, t) = yes.
! Let K(t) be poly-size program computing C(x, t)
! Program K(t) is satisfiable iff X(x) = yes.

29

Establishing NP-Completeness

Recipe to establish NP-completeness of problem Y.
! Step 1. Show that Y is in NP.
! Step 2. Choose an NP-complete problem X.
! Step 3. Prove that X ≤ p Y.

Justification. If X is an NP-complete problem, and Y is a problem in NP
with the property that X ≤ P Y then Y is NP-complete.

Pf. Let W be any problem in NP. Then W ≤ P X ≤ P Y.
! By transitivity, W ≤ P Y.
! Hence Y is NP-complete. ▪ by assumptionby definition of

NP-complete

Theorem. 3-SAT is NP-complete.
Pf. Suffices to show that PROGRAM-SAT ≤ P 3-SAT since 3-SAT is in NP.
! Let K be any line program.
! Create a 3-SAT variable li for each line i.
! Make variables compute correct values at each node:

– li = l4 AND x5 add 4 clauses: (li OR not l4 OR not x5) AND (li OR
not l4 OR x5) AND (li OR l4 OR not x5) AND (not li OR l4 OR x5)

! 3SAT formula is satisfiable if and only if K is satisfiable.

30

3-SAT is NP-Complete

31

Observation. All problems below are NP-complete and polynomial
reduce to one another!

PROGRAM-SAT

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

3-SAT reduces to

INDEPENDENT SET

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

MAX-CUTPLANAR 3-COLOR

SET COVER

NP-Completeness

by definition of NP-completeness

34

More NP-Complete Computational Problems

Aerospace engineering: optimal mesh partitioning for finite elements.
Biology: protein folding.
Chemical engineering: heat exchanger network synthesis.
Civil engineering: equilibrium of urban traffic flow.
Economics: computation of arbitrage in financial markets with friction.
Electrical engineering: VLSI layout.
Environmental engineering: optimal placement of contaminant sensors.
Financial engineering: find minimum risk portfolio of given return.
Game theory: find Nash equilibrium that maximizes social welfare.
Genomics: phylogeny reconstruction.
Mechanical engineering: structure of turbulence in sheared flows.
Medicine: reconstructing 3-D shape from biplane angiocardiogram.
Operations research: optimal resource allocation.
Physics: partition function of 3-D Ising model in statistical mechanics.
Politics: Shapley-Shubik voting power.
Pop culture: Minesweeper consistency.
Statistics: optimal experimental design.

