degrees

Claim: If a graph has m edges, then

$$
\sum_{v} \operatorname{deg}(v)=2 m .
$$

Proof: Every edge $\{u, v\}$ contributes exactly 2 to the left hand side, 1 to $\operatorname{deg}(u)$, and 1 to $\operatorname{deg}(v)$.

degrees

Claim: In a party, the number of people who shake hands with an odd number of people must be even.

Proof: Construct a graph. Each vertex represents person, put edge between 2 people if they shake hands.
Need to prove: \#vertices with odd degree is even.

$$
2 m=\sum \operatorname{deg}(v)=\sum_{v \text { vof even degree }} \operatorname{deg}(v)+\sum_{v \text { of odd degree }} \operatorname{deg}(v)
$$

even
even

Thus $\quad \sum \operatorname{deg}(v)$ is even, so \# vertices with v of odd degree odd degree is even.

Claim: If a graph has no cycles, it must have a vertex v of degree ≤ 1.

Path: A sequence of distinct vertices where each vertex is connected to the next by an edge.

Cycle: A path of length > 1 such that the first vertex is connected to the last one.
$1,2,5,3$ is a cycle
6,4,2,1,3,5,2,4 is not a cycle

Claim: If a graph has no cycles, it must have a vertex v of degree ≤ 1.

EQUIVALENT TO

Claim: If every vertex has degree >1, the graph has a cycle.

Claim: If a graph has no cycles, it must have a vertex v of degree ≤ 1.

Proof:

Suppose not.
Then there is a graph G that has no cycles, and yet every vertex in the graph has degree > 1 .

There must be $v_{0}, v_{1}, \ldots, v_{n}$, a sequence of $n+1$ vertices such that $v_{i-1} \neq v_{i+1}$, for all i, and adjacent vertices have an edge.

> Intuition: this should not be possible! Let's use the degrees of the vertices to find a cycle.

Note: The argument should work for every such graph!

Claim: If a graph has no cycles, it must have a vertex v of degree ≤ 1.

Proof:
Suppose not.
Then there is a graph G that has no cycles, and yet every vertex in the graph has degree > 1 .

There must be $v_{0}, v_{1}, \ldots, v_{n}$, a sequence of $n+1$ vertices such that $v_{i-1} \neq v_{i+1}$, for all i, and adjacent vertices have an edge.
By the pigeonhole principle, there must $i<j$ s.t. $v_{i}=v_{j}$.
Let $\mathrm{i}<\mathrm{j}$ be the closest such pair. Then $v_{i}, v_{i+1}, \ldots, v_{j-1}$ form a cycle.

Intuition: this should not be possible! Let's use the degrees of the vertices to find a cycle.
Note: The argument should work for every such graph!

Lemma: Every tree on n vertices has exactly $n-1$ edges.

Tree: A connected graph that has no cycles.
Proof: By induction on n.
Base case: $\mathrm{n}=1$. Every graph with 1 vertex has 1-1 $=0$ edges. The claim holds.

Inductive step: $\mathrm{n}>1$. Let T be a tree with n vertices.
Since T has no cycles, there is a vertex $v, \operatorname{deg}(v) \leq 1$ by previous claim. $\operatorname{deg}(\mathrm{v})=1$ since T is connected means there are no degree 0 vertices.
$\mathrm{T}^{\prime}=\mathrm{T}-\mathrm{v}$ is connected and has no cycles, so it is a
 tree. T^{\prime} has $\mathrm{n}-1$ vertices. So by induction, T^{\prime} has $\mathrm{n}-2$ edges. Thus T has $\mathrm{n}-1$ edges.

Mantel's Theorem: If a graph on 2 n vertices has $n^{2}+1$ edges, then it must have a triangle (3-cycle).

Proof: By induction on n.

Mantel's Theorem: If a graph on 2 n vertices has $n^{2}+1$ edges, then it must have a triangle (3-cycle).

Proof: By induction on n.
Base case: $\mathrm{n}=1$. Every graph with 2 vertices has at most 1 edge, so it can never have $n^{2}+1=2$ edges. The claim holds vacuously.

Mantel's Theorem: If a graph on $2 n$ vertices has $n^{2}+1$ edges, then it must have a triangle (3-cycle).

Proof: By induction on n.
Base case: $\mathrm{n}=1$. Every graph with 2 vertices has at most 1 edge, so it can never have $n^{2}+1=2$ edges.
The claim holds vacuously.

Inductive step: $\mathrm{n}>1$.

Let $\{x, y\}$ be an edge of the graph, and let G^{\prime} denote the subgraph using the rest of the vertices.

Mantel's Theorem: If a graph on $2 n$ vertices has $n^{2}+1$ edges, then it must have a triangle (3-cycle).

Proof: By induction on n.
Base case: $\mathrm{n}=1$. Every graph with 2 vertices has at most 1 edge, so it can never have $n^{2}+1=2$ edges.
The claim holds vacuously.

Inductive step: $\mathrm{n}>1$.

Let $\{x, y\}$ be an edge of the graph, and let G^{\prime} denote the subgraph using the rest of the vertices.

Case 1: At least $(\mathrm{n}-1)^{2}+1$ edges are in G^{\prime}.
Then by the induction hypothesis, G^{\prime} has a triangle.

Mantel's Theorem: If a graph on $2 n$ vertices has $\mathrm{n}^{2}+1$ edges, then it must have a triangle (3-cycle).

Proof: By induction on n.
Base case: $\mathrm{n}=1$. Every graph with 2 vertices has at most 1 edge, so it can never have $n^{2}+1=2$ edges.
The claim holds vacuously.

Inductive step: $\mathrm{n}>1$.

Let $\{x, y\}$ be an edge of the graph, and let G^{\prime} denote the subgraph using the rest of the vertices.

Case 1: At least $(\mathrm{n}-1)^{2}+1$ edges are in G^{\prime}.
Then by the induction hypothesis, G^{\prime} has a triangle.
Case 2: At most ($\mathrm{n}-1)^{2}$ edges are in G^{\prime}. There is one edge between x, y, so \#edges from $\{x, y\}$ to $\mathrm{G}^{\prime} \geq \mathrm{n}^{2}-(\mathrm{n}-1)^{2}=2(\mathrm{n}-1)+1$. But G^{\prime} has $2(\mathrm{n}-1)$ vertices, so there is vertex z such that $\{x, z\},\{y, z\}$ are edges. Then x, y, z is a triangle.

