CSE42I: Algorithms

Professor: Anup Rao (anuprao@cs)

Algorithms

- A recipe for carrying out a computation efficiently
- Studied before there were computers
- Eg: Gaussian elimination, gcd, multiplication
- How to design algorithms?
- How to analyze efficiency and prove correctness?

Approximate Schedule

Weeks I-2: Introductions, asymptotics, some basic algorithms. Graphs, trees, connectivity, testing bipartiteness.

Weeks 3: Greedy algorithms for Interval Scheduling, Minimum Spanning Tree, Set Cover,Vertex Cover

Weeks 4-5: Divide and Conquer. Algorithms for Sorting, Selection, Closest, Multiplication. Midterm

Week 6: Dynamic Programming. Algorithms for Edit Distance, Longest Path, Knapsack.

Week 7: Flows and Cuts. Algorithms for Matching, Graph Partitioning.
Weeks 8-10: Linear programming, Randomized algorithms, NPcompleteness.

Text Book

Everything you need to know will be in slides.Videos of lectures will be posted on website.

Evaluation

Final: 35\%

- in class, cumulative, cheat sheet

Midterm: 25\%

- in class, cheat sheet

Homework every week: 40\%
-You must write up solutions by yourself, but you can discuss homework with others.

Time Outside Class

Office Hours:

See website for schedule.

To get the most out of this class...

- Start working on the homework early, problems are often deceptively hard.
- Talk to \{professor,TAs, students\}. Brainstorming sessions really really help!

Anup's research:

Communication

 ComplexityIf two or more people need to compute a function that depends on all their inputs, how long does their conversation need to be?

Concrete Problems

How many bits need to be communicated to know if $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ have a common element?

Economics

A new way to use graph theory to measure the efficiency of an economy.

