
ML vs (classical) Algorithms

Two paradigms

ML

- 1. Gather a lot of data
- 2. Train a neural net
 - A. Run it on data
 - **B.** Update parameters
 - C. Repeat
 - D. Stop when accuracy stops increasing

Algorithms

- 1. Think really hard
- 2. Invent an algorithm
- 3. Prove that it is fast
- 4. Prove that it is correct

Two paradigms

ML

- 1. Gather a lot of data
- 2. Train a neural net
 - A. Run it on data
 - **B. Update parameters**
 - C. Repeat

D. Stop when accuracy stops increasing

Cons

1. Don't know "why" it works

- 2. Very hard to get worst case guarantees
- 3. Need a lot of data

Pros

1. Result runs Fast

2. Easier to design

Algorithms

- 1. Think really hard
- 2. Invent an algorithm
- 3. Prove that it is fast
- 4. Prove that it is correct

Pros

1. Know "why" it works 2. Worst case guarantees

Cons

1. Sometimes fast, sometimes slow

2. Much harder to design