Polynomialtime reductions

Suppose Y in P. What else is in P?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary
iInstances of problem X can be solved using:

* Polynomial number of standard computational steps, plus

* Polynomial number of calls to oracle that solves problem Y.
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Polynomialtime reductions

Suppose Y in P. What else is in P?
Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary
iInstances of problem X can be solved using:

* Polynomial number of standard computational steps, plus
* Polynomial number of calls to oracle that solves problem Y.

Notation. X =<,Y.

Note. We pay for time to write down instances sent to oracle =
iInstances of Y must be of polynomial size.

Caveat. Don't mistake X <, Y with Y <, X.



Polynomialtime reductions

Design algorithms. If X <, Y and Y can be solved in polynomial time,
then X can be solved in polynomial time.

Establish intractability. If X <, Y and X cannot be solved in polynomial time, then Y
cannot be solved in polynomial time.

Establish equivalence. If both X<, Yand Y <, X, we use notation X =,Y.
In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.



Independent set

INDEPENDENT-SET. Given graph G = (V, E) and integer k, is there subset S C V, with |
S| = k, s.t. no edge contained in S ?

Ex. Is there an independent set of size =6 ?
Ex. Is there an independent set of size =7 ?

‘ independent set of size 6




Vertex cover

VERTEX-COVER. Given graph G = (V, E) and integer k, is there S C V with N
< k, s.t. each edge touches S ?

Ex. Is there a vertex cover of size <4 ?
Ex. Is there a vertex cover of size <3 ?

‘ independent set of size 6

Q vertex cover of size 4




Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER =, INDEPENDENT-SET.
Pf. We show S is an independent set of size k iff V- S is a vertex cover
of size n — k.

‘ independent set of size 6

Q vertex cover of size 4




Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER =, INDEPENDENT-SET.
Pf. We show S is an independent set of size k iff V- S is a vertex cover
of size n — k.

Let S be independent set.

Consider edge {u, v}.
S independent = either u & S or v & S (or both)

= eitherue V-Sorve& V-5 (or both).
Thus, V- S covers {u, v}.



Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER =, INDEPENDENT-SET.

Pf. We show S is an independent set of size k iff V- S is a vertex cover
of size n — k.

<
* Let V- S be vertex cover.
* Considertwo nodesu&e Sandv e S.
* {u,v} & E since V- S is a vertex cover = S independent set. =



Set cover

SET-COVER. Given a collection §,, S,, ..., S, of subsets of {1,2,...,n}, and an integer
k, does there exist < k of these sets whose union is equal to U ?

Sample application.
* m available pieces of software.
* Set of n capabilities that we would like our system to have.
* The it piece of software provides the set §; C U of capabilities.
* Goal: achieve all n capabilities using fewest pieces of software.

U={1,2,3,4,5,6,7)

: Sl={3a7} S4={2a4}

(5.=1{3,4,5,6}) Ss={5} 5

: S3={1} (S6={1’2’6’7})
k=2 5

a set cover instance



Vertex cover reduces to set cover

Theorem. VERTEX-COVER =< , SET-COVER.

Pf. Given VERTEX-COVER instance G = (V, E), we construct a SET-COVER instance
that has a set cover of size k iff G has a vertex cover of size k.

Construction.
* Universe = E.
* Include one set foreachnodeve V: §,={eE E: eincidentto v }.

& e . o . U={1,2,3,4,5,6,7)
. S,={3,7} S, ={2,4}
(D) ® ©) . 5.={3,4,5,6} S,={5}
(=D e ©s S,={1} S,={1,2,6,7}
® @ i
vertex cover instance set cover instance

(k = 2) (k = 2)
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Vertex cover reduces to set cover

Lemma. G =(V, E) contains a vertex cover of size k iff (U, S) contains a set cover of
size k.

Pf. = LetX C V be a vertex cover of size k in G.
* ThenY={S,:vE X} is asetcoverof size k. =

e, e e, . U={1,2,3,4,5,6,7}
. S,={3,7} S, ={2,4}

G ®6 G ECSC={3,4,5,6}) S,={5}

(<p © . - S.={1} (S={1,2,6,7}) |

vertex cover instance set cover instance
(k = 2) (k = 2)
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Vertex cover reduces to set cover

Lemma. G =(V, E) contains a vertex cover of size k iff (U, S) contains a set cover of
size k.

Pf. < LetY C S be a set cover of size kin (U, S).
* ThenX={v:S,€Y}isavertex coverofsize kin G. =

e, e . o . U={1,2,3,4,5,6,7)
' Sa:{3a7} Sb:{2a4}

O % © - (5.={3.4,5.6}) $,={5} :
k=2 e @ @ €s S, ={1} (sz {1,2,6,7})
vertex cover instance set cover instance
(k = 2) (k = 2)
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Satisfiability

Literal. A boolean variable or its negation.

Clause. A disjunction of literals.

Conjunctive normal form. A propositional
formula ® that is the conjunction of clauses.

SAT. Given CNF formula ®, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals
(and each literal corresponds to a different variable).

-----------------------------------------------------------------------------------------------------------

yes instance: x; = true, X, = true, x; = false, x, = false

Key application. Electronic design automation (EDA).
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3-satisfiability reduces to independent set

Theorem. 3-SAT <p INDEPENDENT-SET.

Pf. Given an instance ® of 3-SAT, we construct an instance (G, k) of INDEPENDENT-

SET that has an independent set of size k iff ® is satisfiable.

Construction.
* G contains 3 nodes for each clause, one for each literal.
* Connect 3 literals in a clause in a triangle.
* Connect literal to each of its negations.

14



3-satisfiability reduces to independent set

Lemma. G contains independent set of size k=1® | iff ® is satisfiable.

Pf. = Let S be independent set of size %.
* § must contain exactly one node in each triangle.
* Set these literals to rrue (and remaining variables consistently).
* Truth assignment is consistent and all clauses are satisfied.

Pf < Given satisfying assignment, select one true literal from each triangle. This is
an independent set of size k. =

X1 X2 X1
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3-colorability

3-CoLOR. Given an undirected graph G, can the nodes be colored red, green, and
blue so that no adjacent nodes have the same color?

yes instance

16



3-satisfiability reduces to 3-colorability

Theorem. 3-SAT <, 3-COLOR.

Pf. Given 3-SAT instance ®, we construct an instance of 3-COLOR that is
3-colorable iff @ is satisfiable.

17



3-satisfiability reduces to 3-colorability

Construction.

) Create a graph G with a node for each literal.
i) Connect each literal to its negation.

(
(
(iii) Create 3 new nodes T, F, and B; connect them in a triangle.
(iv) Connect each literal to B.

(

v) For each clause Cj, add a gadget of 6 nodes and 13 edges.

f

to be described later

true false
T F
base B
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3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff ® is satisfiable.

Pf. = Suppose graph G is 3-colorable.
* Consider assignment that sets all T literals to true.
* (iv) ensures each literal is T or F.

* (i) ensures a literal and its negation are opposites.

true false
T F
base B
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3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff ® is satisfiable.

Pf. = Suppose graph G is 3-colorable.
* Consider assignment that sets all T literals to true.
* (iv) ensures each literal is T or F.
* (i) ensures a literal and its negation are opposites.
* (v) ensures at least one literal in each clause is T.

6-node gadget

-t -
-----
- --
------
- --
------
- -
------
------
-------
- --
______
- --
-----
-----
- --
-----
-----
-
-------
-----

- -
-
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3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff ® is satisfiable.

Pf. = Suppose graph G is 3-colorable.
* Consider assignment that sets all T literals to true.
* (iv) ensures each literal is T or F.

* (ii) ensures a literal and its negation are opposites.

* (v) ensures at least one literal in each clause is T.

true

—

G not 3-colorable if

literal nodes all are red

/

contradiction

/

F

false
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3-satisfiability reduces to directed hamilton cycle

DIR-HAM-CYCLE: Given a digraph G = (V, E), does there exist a simple directed cycle
I" that contains every node in V ?

Theorem. 3-SAT < , DIR-HAM-CYCLE.

Pf. Given an instance ® of 3-SAT, we construct an instance of DIR-HAM-CYCLE that
has a Hamilton cycle iff ® is satisfiable.

Construction. First, create graph that has 2» Hamilton cycles which correspond in a
natural way to 2" possible truth assignments.
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3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance ® with n variables x; and & clauses.
* Construct G to have 2» Hamilton cycles.
* Intuition: traverse path i from left to right < set variable x;= true.

®

>Q<—>Q< >O<—>Q4 >Q4—>Q<——PQ4

3k + 3

O xa
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3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance ® with n variables x; and & clauses.
* For each clause, add a node and 6 edges.

c'."c!,lﬁy> ® «

\

X2

®
\
|
@
O-

X3
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3-satisfiability reduces to directed hamilton cycle

Lemma. & is satisfiable iff G has a Hamilton cycle.

Pf. =
* Suppose 3-SAT instance has satisfying assignment x*.
* Then, define Hamilton cycle in G as follows:
- If x*, = true, traverse row i from left to right
- If x*, = false, traverse row i from right to left
- for each clause C;, there will be at least one row i in which we are going in
"correct" direction to splice clause node C;into cycle
(and we splice in C; exactly once)
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3-satisfiability reduces to directed hamilton cycle

Lemma. & is satisfiable iff G has a Hamilton cycle.

Pf. <
* Suppose G has a Hamilton cycle I'.
* If " enters clause node C;, it must depart on mate edge.
- nodes immediately before and after C; are connected by an edge ¢ € E
- removing C;from cycle, and replacing it with edge e yields Hamilton cycle on
G-{C;}
* Continuing in this way, we are left with a Hamilton cycle I'' in
G-{C{,Cy,..., Cr }.
Set x*, = true iff I'' traverses row i left to right.
Since T' visits each clause node C;, at least one of the paths is traversed in

"correct" direction, and each clause is satisfied. =



Final
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