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Polynomial-time reductions

Suppose Y in P. What else is in P?
 
Reduction.  Problem X polynomial-time (Cook) reduces to problem Y if arbitrary 
instances of problem X can be solved using:
・Polynomial number of standard computational steps, plus
・Polynomial number of calls to oracle that solves problem Y. 

computational model supplemented by special piece  
of hardware that solves instances of Y in a single step

 
instance I 

(of X)
solution S to I

Algorithm 
for Y

Algorithm for X
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Polynomial-time reductions

Suppose Y in P. What else is in P?
 
Reduction.  Problem X polynomial-time (Cook) reduces to problem Y if arbitrary 
instances of problem X can be solved using:
・Polynomial number of standard computational steps, plus
・Polynomial number of calls to oracle that solves problem Y. 

 

Notation.  X ≤ P Y. 
 
Note.  We pay for time to write down instances sent to oracle  ⇒ 

instances of Y must be of polynomial size. 
 
Caveat.  Don't mistake  X ≤ P Y with Y ≤ P X.
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Polynomial-time reductions

Design algorithms.  If X ≤ P Y and Y can be solved in polynomial time, 
then X can be solved in polynomial time.
 
Establish intractability.  If X ≤ P Y and X cannot be solved in polynomial time, then Y 
cannot be solved in polynomial time.
 
Establish equivalence.  If both X ≤ P Y and Y ≤ P X, we use notation X ≡ P Y. 
In this case, X can be solved in polynomial time iff Y can be.
 
 
 
 
 
 
 
Bottom line.  Reductions classify problems according to relative difficulty.
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Independent set

INDEPENDENT-SET.  Given graph G = (V, E) and integer k, is there subset S ⊆ V, with | 
S |  ≥  k, s.t. no edge contained in S ?
 
Ex.  Is there an independent set of size ≥ 6 ?
Ex.  Is there an independent set of size ≥ 7 ?

independent set of size 6
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Vertex cover

VERTEX-COVER.  Given graph G = (V, E) and integer k, is there S ⊆ V with             | S |  
≤  k, s.t. each edge touches S ?
 
Ex.  Is there a vertex cover of size ≤ 4 ?
Ex.  Is there a vertex cover of size ≤ 3 ?

vertex cover of size 4

independent set of size 6
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Vertex cover and independent set reduce to one another

Theorem.  VERTEX-COVER ≡P INDEPENDENT-SET.
Pf.  We show S is an independent set of size k iff V − S is a vertex cover 
of size n – k.

independent set of size 6

vertex cover of size 4
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Vertex cover and independent set reduce to one another

Theorem.  VERTEX-COVER ≡P INDEPENDENT-SET.
Pf.  We show S is an independent set of size k iff V − S is a vertex cover 
of size n – k. 
 
⇒

・Let S be independent set.
・Consider edge {u, v}.
・S independent  ⇒ either u ∉ S or v ∉ S (or both)

                              ⇒ either u ∈ V − S or v ∈  V − S (or both).
・Thus, V − S covers {u, v}. 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Vertex cover and independent set reduce to one another

Theorem.  VERTEX-COVER ≡P INDEPENDENT-SET.
Pf.  We show S is an independent set of size k iff V − S is a vertex cover 
of size n – k. 
 
⇐ 
・Let V − S be vertex cover.
・Consider two nodes u ∈ S and v ∈ S.
・{u, v} ∉ E since V − S is a vertex cover ⇒ S independent set.  ▪
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Set cover

SET-COVER.  Given a collection S1, S2, …,  Sm of subsets of {1,2,...,n}, and an integer 
k, does there exist ≤ k of these sets whose union is equal to U ?
 
Sample application.
・m available pieces of software.
・Set of n capabilities that we would like our system to have.
・The ith piece of software provides the set Si ⊆ U of capabilities.
・Goal:  achieve all n capabilities using fewest pieces of software.

U = { 1, 2, 3, 4, 5, 6, 7 }
S1 = { 3, 7 }      S4 = { 2, 4 }
S2 = { 3, 4, 5, 6 }      S5 = { 5 } 
S3 = { 1 }      S6 =  { 1, 2, 6, 7 }
k = 2

a set cover instance



Theorem.  VERTEX-COVER ≤ P SET-COVER.
Pf.  Given VERTEX-COVER instance G = (V, E), we construct a SET-COVER instance 
that has a set cover of size k iff G has a vertex cover of size k.
 
Construction.  
・Universe = E.
・Include one set for each node v ∈ V :  Sv = {e ∈ E : e incident to v }.

d

c
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Vertex cover reduces to set cover

vertex cover instance 
(k = 2)

k = 2 e1 

e2 e3 

e5 

e4 

e6 

e7 

a b

e

f

set cover instance
(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 }   Sb = { 2, 4 }

Sc = { 3, 4, 5, 6 }   Sd = { 5 } 

Se = { 1 }   Sf  =  { 1, 2, 6, 7 }



Lemma.  G = (V, E) contains a vertex cover of size k iff (U, S) contains a set cover of 
size k.
 
Pf.  ⇒  Let X  ⊆  V be a vertex cover of size k in G.
・Then Y = { Sv : v ∈ X } is a set cover of size k.  ▪
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Vertex cover reduces to set cover

vertex cover instance 
(k = 2)

k = 2 e1 

e2 e3 

e5 

e4 

e6 

e7 

a

d

b

e

f c

set cover instance
(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 }   Sb = { 2, 4 }

Sc = { 3, 4, 5, 6 }   Sd = { 5 } 

Se = { 1 }   Sf  =  { 1, 2, 6, 7 }

cf



Lemma.  G = (V, E) contains a vertex cover of size k iff (U, S) contains a set cover of 
size k.
 
Pf.  ⇐  Let Y  ⊆  S be a set cover of size k in (U, S).
・Then X = { v : Sv ∈ Y } is a vertex cover of size k in G. ▪
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Vertex cover reduces to set cover

vertex cover instance 
(k = 2)

k = 2 e1 

e2 e3 

e5 

e4 

e6 

e7 

set cover instance
(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 }   Sb = { 2, 4 }

Sc = { 3, 4, 5, 6 }   Sd = { 5 } 

Se = { 1 }   Sf  =  { 1, 2, 6, 7 }

a

d

b

e

f ccf



Literal. A boolean variable or its negation.
 
Clause. A disjunction of literals.
 
Conjunctive normal form.  A propositional  
formula Φ that is the conjunction of clauses.
 
SAT.  Given CNF formula Φ, does it have a satisfying truth assignment?
3-SAT.  SAT where each clause contains exactly 3 literals 
(and each literal corresponds to a different variable).
 
 
 
 
 
Key application.  Electronic design automation (EDA).
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Satisfiability

yes instance:  x1 = true, x2 = true, x3 = false, x4 = false



Theorem.  3-SAT ≤ P INDEPENDENT-SET.
Pf.  Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-
SET that has an independent set of size k iff Φ is satisfiable.
 
Construction.
・G contains 3 nodes for each clause, one for each literal.
・Connect 3 literals in a clause in a triangle.
・Connect literal to each of its negations.

14

3-satisfiability reduces to independent set

k = 3

G
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3-satisfiability reduces to independent set

Lemma.  G contains independent set of size k = | Φ | iff Φ is satisfiable.
 
Pf.  ⇒  Let S be independent set of size k.
・S must contain exactly one node in each triangle.
・Set these literals to true (and remaining variables consistently).
・Truth assignment is consistent and all clauses are satisfied.
 
Pf  ⇐   Given satisfying assignment, select one true literal from each triangle. This is 
an independent set of size k.  ▪

k = 3

G



3-COLOR.  Given an undirected graph G, can the nodes be colored red, green, and 
blue so that no adjacent nodes have the same color?
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3-colorability

yes instance
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3-satisfiability reduces to 3-colorability

Theorem.  3-SAT ≤ P 3-COLOR.
 
Pf.  Given 3-SAT instance Φ, we construct an instance of 3-COLOR that is 
3-colorable iff Φ is satisfiable.
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3-satisfiability reduces to 3-colorability

Construction.
(i) Create a graph G with a node for each literal.
(ii) Connect each literal to its negation.
(iii) Create 3 new nodes T, F, and B; connect them in a triangle.
(iv) Connect each literal to B.
(v) For each clause Cj, add a gadget of 6 nodes and 13 edges.

T

B

F

true false

base

to be described later
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3-satisfiability reduces to 3-colorability

Lemma.  Graph G is 3-colorable iff Φ is satisfiable.
 
Pf.  ⇒  Suppose graph G is 3-colorable.
・Consider assignment that sets all T literals to true.
・(iv) ensures each literal is T or F.
・(ii) ensures a literal and its negation are opposites.

T

B

F

true false

base
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3-satisfiability reduces to 3-colorability

Lemma.  Graph G is 3-colorable iff Φ is satisfiable.

Pf.  ⇒  Suppose graph G is 3-colorable.
・Consider assignment that sets all T literals to true.
・(iv) ensures each literal is T or F.
・(ii) ensures a literal and its negation are opposites.
・(v) ensures at least one literal in each clause is T.

T F

B

true false

6-node gadget



contradiction

Lemma.  Graph G is 3-colorable iff Φ is satisfiable.

Pf.  ⇒  Suppose graph G is 3-colorable.
・Consider assignment that sets all T literals to true.
・(iv) ensures each literal is T or F.
・(ii) ensures a literal and its negation are opposites.
・(v) ensures at least one literal in each clause is T.
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3-satisfiability reduces to 3-colorability

T F

B
G not 3-colorable if

literal nodes all are red

true false
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3-satisfiability reduces to directed hamilton cycle

DIR-HAM-CYCLE:  Given a digraph G = (V, E), does there exist a simple directed cycle 
Γ that contains every node in V ?

Theorem. 3-SAT ≤ P DIR-HAM-CYCLE.
 
Pf.  Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that 
has a Hamilton cycle iff Φ is satisfiable.
 
Construction.  First, create graph that has 2n Hamilton cycles which correspond in a 
natural way to 2n possible truth assignments.
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3-satisfiability reduces to directed hamilton cycle

Construction.  Given 3-SAT instance Φ with n variables xi and k clauses.
・Construct G to have 2n Hamilton cycles.

・Intuition:  traverse path i from left to right  ⇔  set variable xi = true.

s

t

3k + 3

x1

x2

x3



Construction.  Given 3-SAT instance Φ with n variables xi and k clauses. 
・For each clause, add a node and 6 edges.

clause node 2
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3-satisfiability reduces to directed hamilton cycle

s

t

3k + 3

x1

x2

x3

clause node 1C1 = x1 � x2 � x3 C2 = x1 � x2 � x3
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3-satisfiability reduces to directed hamilton cycle

Lemma.   Φ is satisfiable iff G has a Hamilton cycle.
 
Pf.  ⇒ 
・Suppose 3-SAT instance has satisfying assignment x*.
・Then, define Hamilton cycle in G as follows:
- if x*i = true, traverse row i  from left to right
- if x*i = false, traverse row i from right to left
- for each clause Cj , there will be at least one row i in which we are going in 

"correct" direction to splice clause node Cj into cycle  
(and we splice in Cj exactly once)
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3-satisfiability reduces to directed hamilton cycle

Lemma.   Φ is satisfiable iff G has a Hamilton cycle.
 
Pf.  ⇐ 
・Suppose G has a Hamilton cycle Γ.
・If Γ enters clause node Cj , it must depart on mate edge.
- nodes immediately before and after Cj are connected by an edge e ∈ E
- removing Cj from cycle, and replacing it with edge e yields Hamilton cycle on 

G – { Cj  }

・Continuing in this way, we are left with a Hamilton cycle Γ' in 
G  – { C1 , C2 , …,  Ck }.

・Set x*i = true iff Γ' traverses row i left to right.
・Since Γ visits each clause node Cj , at least one of the paths is traversed in 

"correct" direction, and each clause is satisfied.   ▪



Final

27


