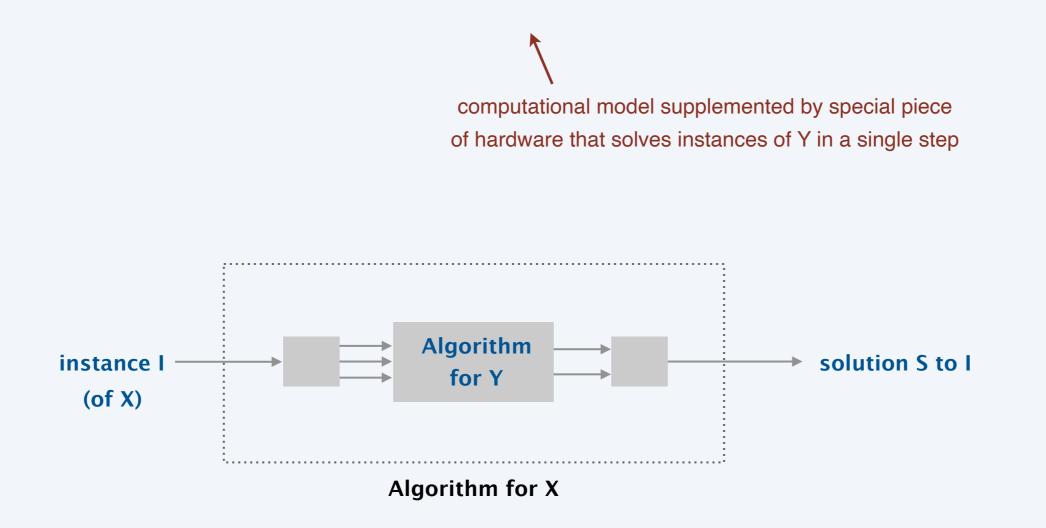
Suppose *Y* in P. What else is in P?

Reduction. Problem *X* polynomial-time (Cook) reduces to problem *Y* if arbitrary instances of problem *X* can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem *Y*.



Suppose *Y* in P. What else is in P?

Reduction. Problem *X* polynomial-time (Cook) reduces to problem *Y* if arbitrary instances of problem *X* can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem *Y*.

Notation. $X \leq_P Y$.

Note. We pay for time to write down instances sent to oracle \Rightarrow instances of *Y* must be of polynomial size.

```
Caveat. Don't mistake X \leq_P Y with Y \leq_P X.
```

Polynomial-time reductions

Design algorithms. If $X \leq_P Y$ and *Y* can be solved in polynomial time, then *X* can be solved in polynomial time.

Establish intractability. If $X \leq_P Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_P Y$ and $Y \leq_P X$, we use notation $X \equiv_P Y$. In this case, *X* can be solved in polynomial time iff *Y* can be.

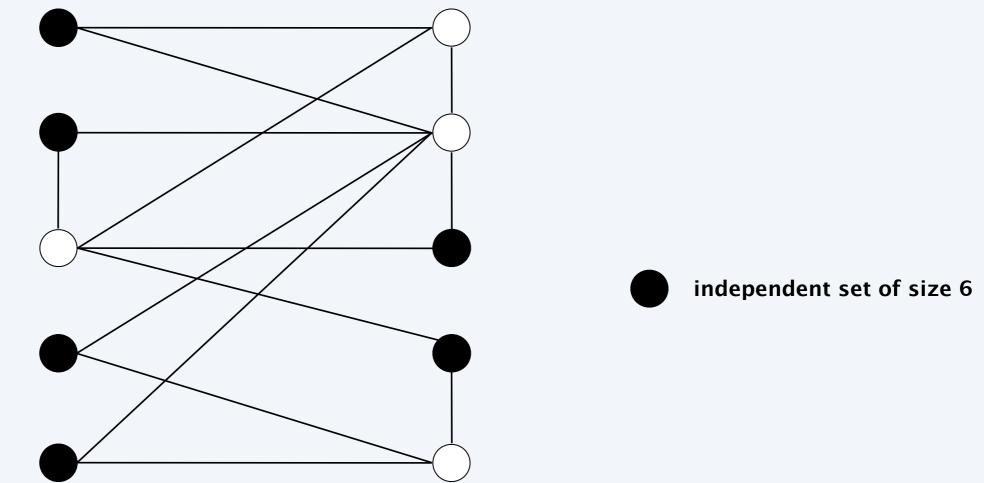
Bottom line. Reductions classify problems according to relative difficulty.

Independent set

INDEPENDENT-SET. Given graph G = (V, E) and integer k, is there subset $S \subseteq V$, with $|S| \ge k$, s.t. no edge contained in S?

Ex. Is there an independent set of size ≥ 6 ?

Ex. Is there an independent set of size ≥ 7 ?

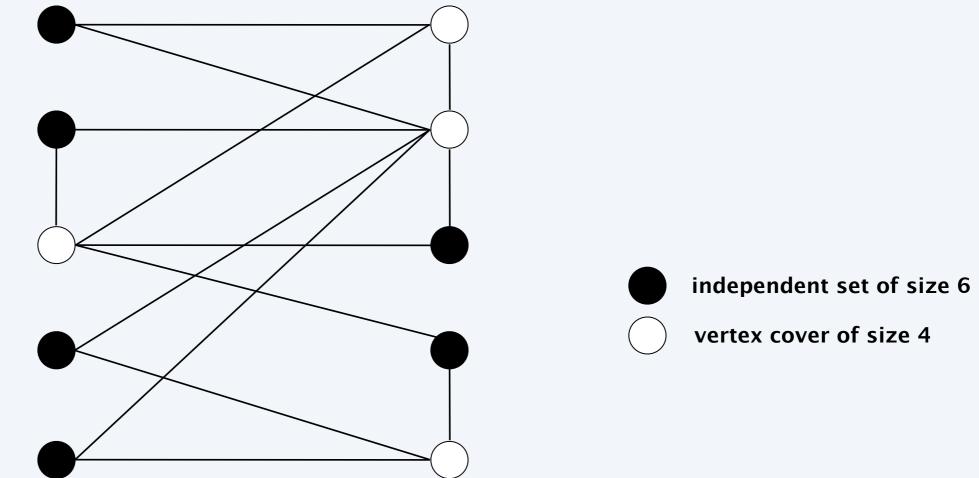


Vertex cover

VERTEX-COVER. Given graph G = (V, E) and integer k, is there $S \subseteq V$ with $|S| \le k$, s.t. each edge touches *S* ?

Ex. Is there a vertex cover of size ≤ 4 ?

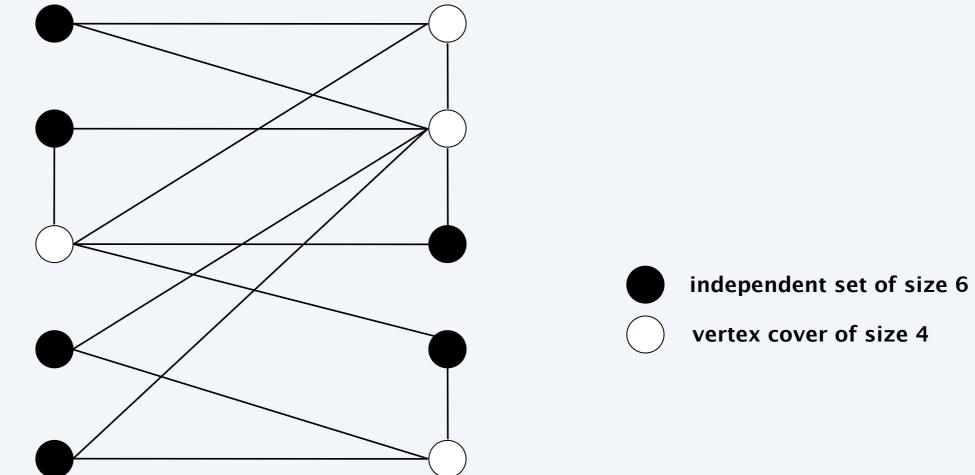
Ex. Is there a vertex cover of size ≤ 3 ?



Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER \equiv_P INDEPENDENT-SET.

Pf. We show *S* is an independent set of size *k* iff V - S is a vertex cover of size n - k.



Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER \equiv_P INDEPENDENT-SET.

Pf. We show *S* is an independent set of size *k* iff V - S is a vertex cover of size n - k.

 \Rightarrow

- Let *S* be independent set.
- Consider edge $\{u, v\}$.
- S independent \Rightarrow either $u \notin S$ or $v \notin S$ (or both)

 \Rightarrow either $u \in V - S$ or $v \in V - S$ (or both).

• Thus, V - S covers $\{u, v\}$.

Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER \equiv_P INDEPENDENT-SET.

Pf. We show *S* is an independent set of size *k* iff V - S is a vertex cover of size n - k.

 \Leftarrow

- Let V S be vertex cover.
- Consider two nodes $u \in S$ and $v \in S$.
- $\{u, v\} \notin E$ since V S is a vertex cover $\Rightarrow S$ independent set. •

SET-COVER. Given a collection $S_1, S_2, ..., S_m$ of subsets of $\{1, 2, ..., n\}$, and an integer k, does there exist $\leq k$ of these sets whose union is equal to U?

Sample application.

- *m* available pieces of software.
- Set of *n* capabilities that we would like our system to have.
- The *i*th piece of software provides the set $S_i \subseteq U$ of capabilities.
- Goal: achieve all *n* capabilities using fewest pieces of software.

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$

$$S_1 = \{ 3, 7 \}$$

$$S_2 = \{ 3, 4, 5, 6 \}$$

$$S_3 = \{ 1 \}$$

$$k = 2$$

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$

$$S_4 = \{ 2, 4 \}$$

$$S_5 = \{ 5 \}$$

$$S_6 = \{ 1, 2, 6, 7 \}$$

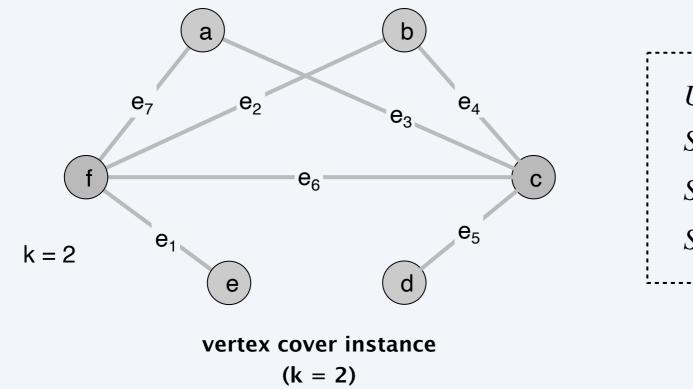
a set cover instance

Theorem. VERTEX-COVER \leq_P SET-COVER.

Pf. Given VERTEX-COVER instance G = (V, E), we construct a SET-COVER instance that has a set cover of size *k* iff *G* has a vertex cover of size *k*.

Construction.

- Universe = E.
- Include one set for each node $v \in V$: $S_v = \{e \in E : e \text{ incident to } v\}$.

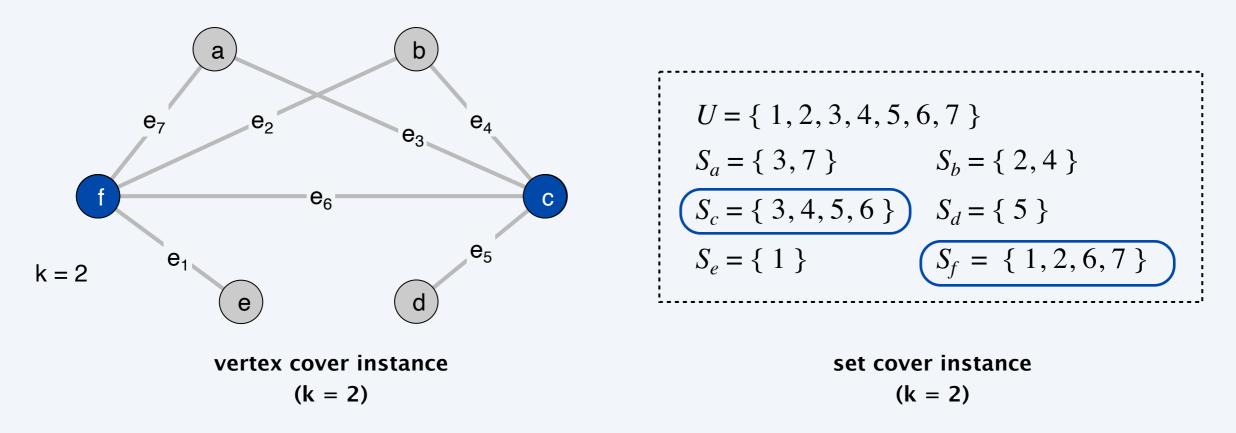


$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$	
$S_a = \{ 3, 7 \}$	$S_b = \{ 2, 4 \}$
$S_c = \{ 3, 4, 5, 6 \}$	$S_d = \{ 5 \}$
$S_e = \{ \ 1 \ \}$	$S_f = \{ 1, 2, 6, 7 \}$

set cover instance (k = 2) Lemma. G = (V, E) contains a vertex cover of size *k* iff (U, S) contains a set cover of size *k*.

Pf. \Rightarrow Let $X \subseteq V$ be a vertex cover of size k in G.

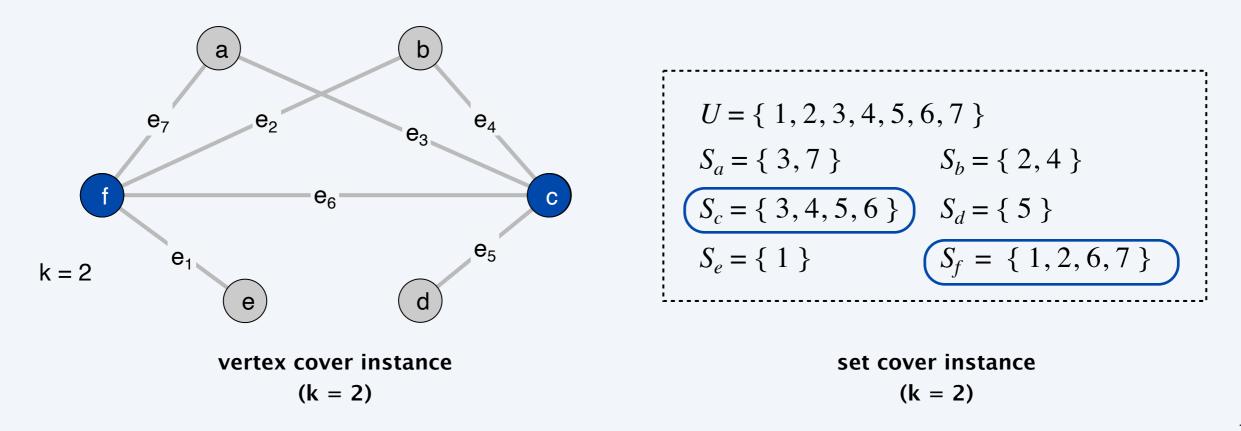
• Then $Y = \{ S_v : v \in X \}$ is a set cover of size k.



Lemma. G = (V, E) contains a vertex cover of size *k* iff (U, S) contains a set cover of size *k*.

Pf. \leftarrow Let $Y \subseteq S$ be a set cover of size k in (U, S).

• Then $X = \{ v : S_v \in Y \}$ is a vertex cover of size k in G.

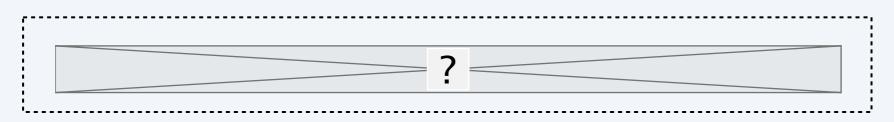


Literal. A boolean variable or its negation.

Clause. A disjunction of literals.

Conjunctive normal form. A propositional formula Φ that is the conjunction of clauses.

SAT. Given CNF formula Φ , does it have a satisfying truth assignment? 3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).



yes instance: $x_1 = true, x_2 = true, x_3 = false, x_4 = false$

Key application. Electronic design automation (EDA).

3-satisfiability reduces to independent set

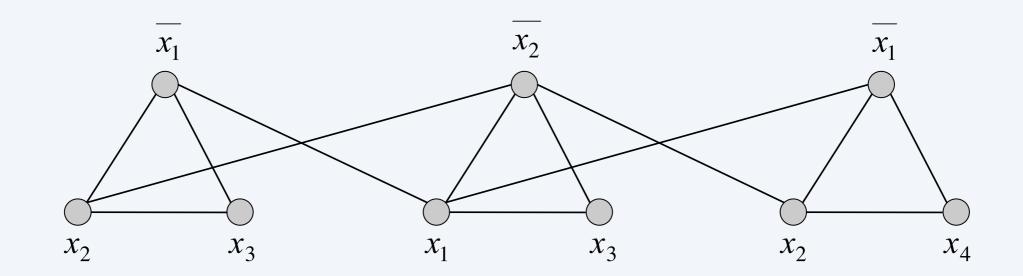
Theorem. 3-SAT \leq_P INDEPENDENT-SET.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-

SET that has an independent set of size k iff Φ is satisfiable.

Construction.

- G contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.



k = 3

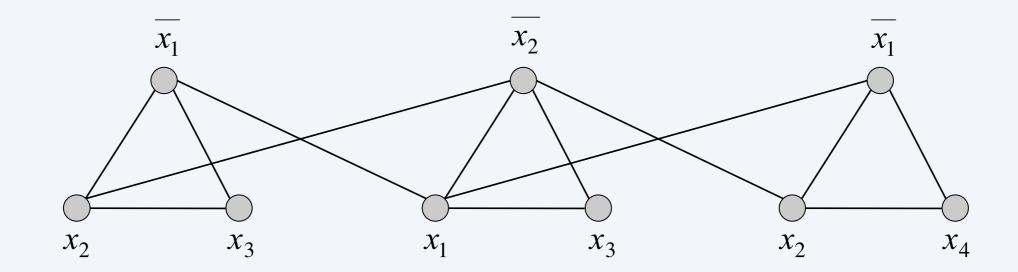
G

Lemma. *G* contains independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Pf. \Rightarrow Let *S* be independent set of size *k*.

- *S* must contain exactly one node in each triangle.
- Set these literals to *true* (and remaining variables consistently).
- Truth assignment is consistent and all clauses are satisfied.

Pf \leftarrow Given satisfying assignment, select one true literal from each triangle. This is an independent set of size *k*.

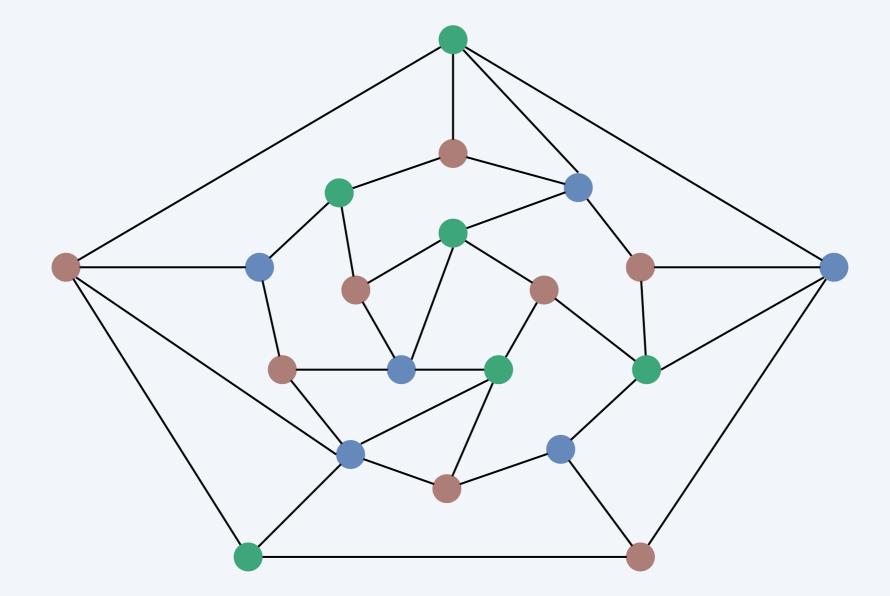


k = 3

G

3-colorability

3-COLOR. Given an undirected graph G, can the nodes be colored red, green, and blue so that no adjacent nodes have the same color?



yes instance

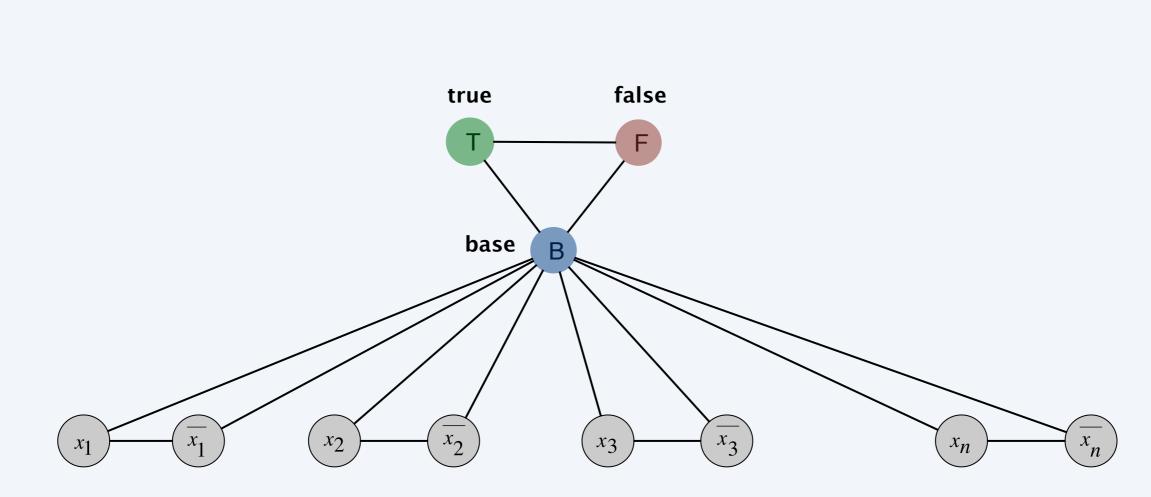
Theorem. $3\text{-SAT} \leq P 3\text{-COLOR}$.

Pf. Given 3-SAT instance Φ , we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable.

Construction.

- (i) Create a graph *G* with a node for each literal.
- (ii) Connect each literal to its negation.
- (iii) Create 3 new nodes *T*, *F*, and *B*; connect them in a triangle.
- (iv) Connect each literal to *B*.
- (v) For each clause C_j , add a gadget of 6 nodes and 13 edges.

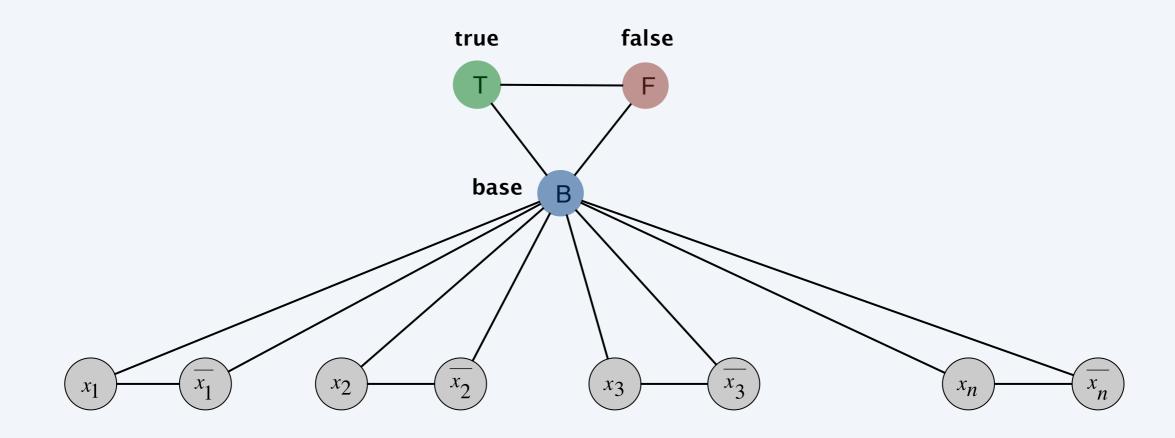
to be described later



Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph *G* is 3-colorable.

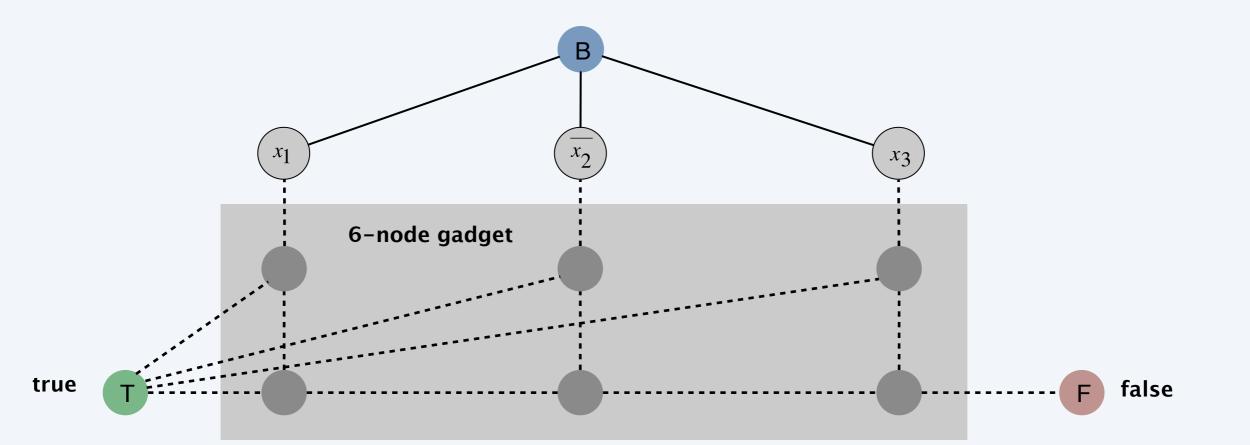
- Consider assignment that sets all *T* literals to true.
- (iv) ensures each literal is T or F.
- (ii) ensures a literal and its negation are opposites.



Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph *G* is 3-colorable.

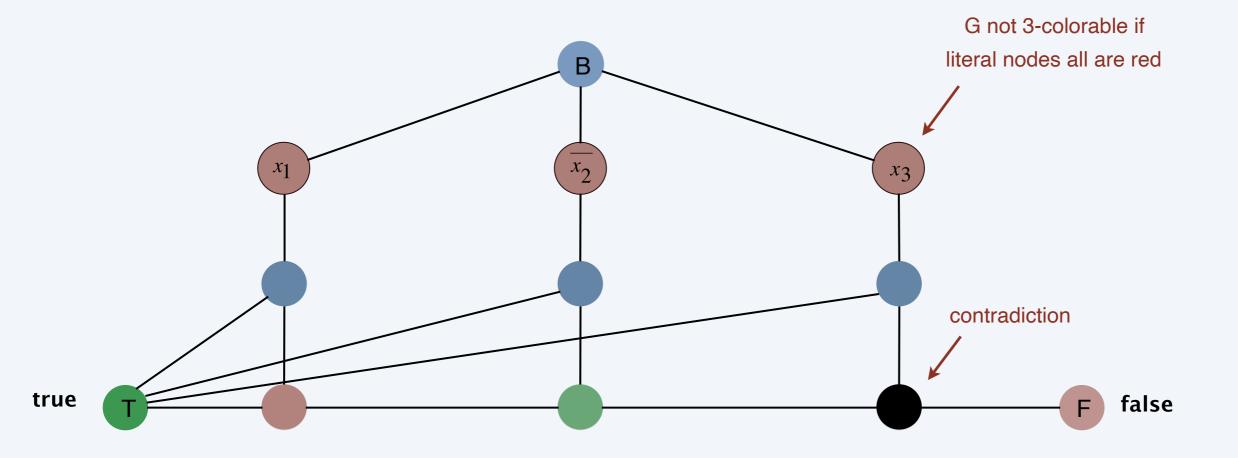
- Consider assignment that sets all T literals to true.
- (iv) ensures each literal is T or F.
- (ii) ensures a literal and its negation are opposites.
- (v) ensures at least one literal in each clause is T.



Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph *G* is 3-colorable.

- Consider assignment that sets all T literals to true.
- (iv) ensures each literal is T or F.
- (ii) ensures a literal and its negation are opposites.
- (v) ensures at least one literal in each clause is T.



DIR-HAM-CYCLE: Given a digraph G = (V, E), does there exist a simple directed cycle Γ that contains every node in *V*?

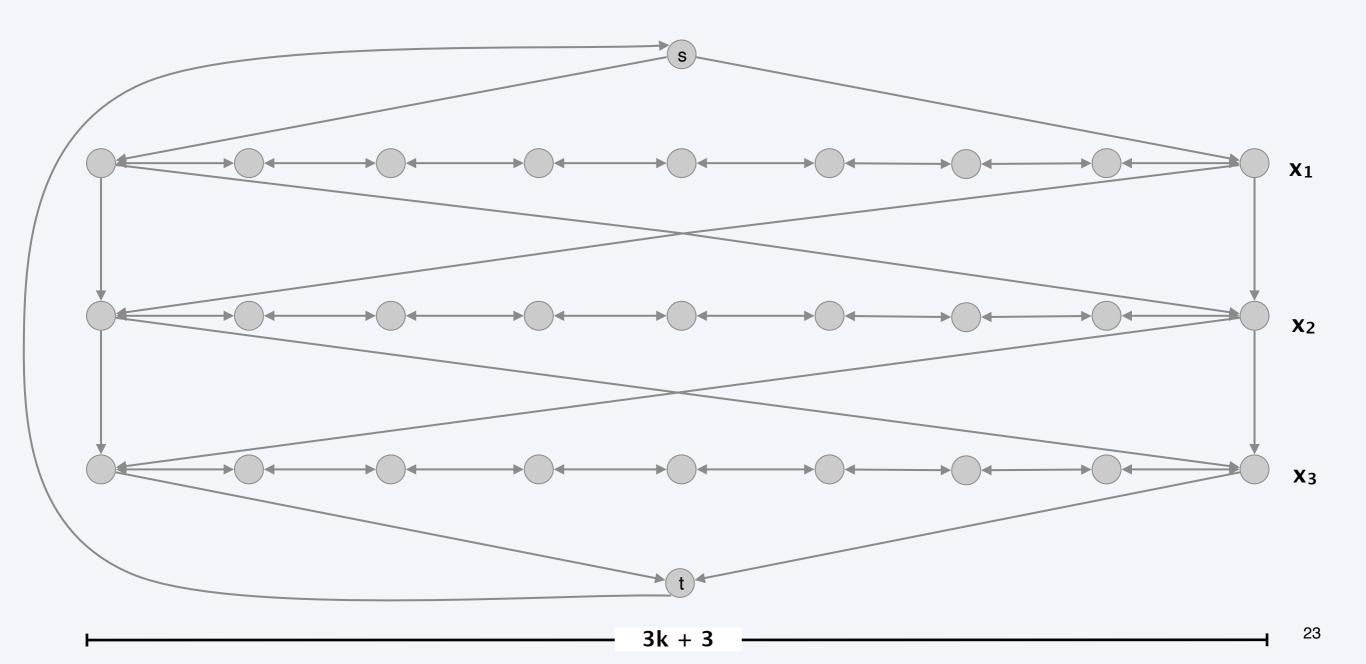
Theorem. $3-SAT \leq_P DIR-HAM-CYCLE$.

Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamilton cycle iff Φ is satisfiable.

Construction. First, create graph that has 2^n Hamilton cycles which correspond in a natural way to 2^n possible truth assignments.

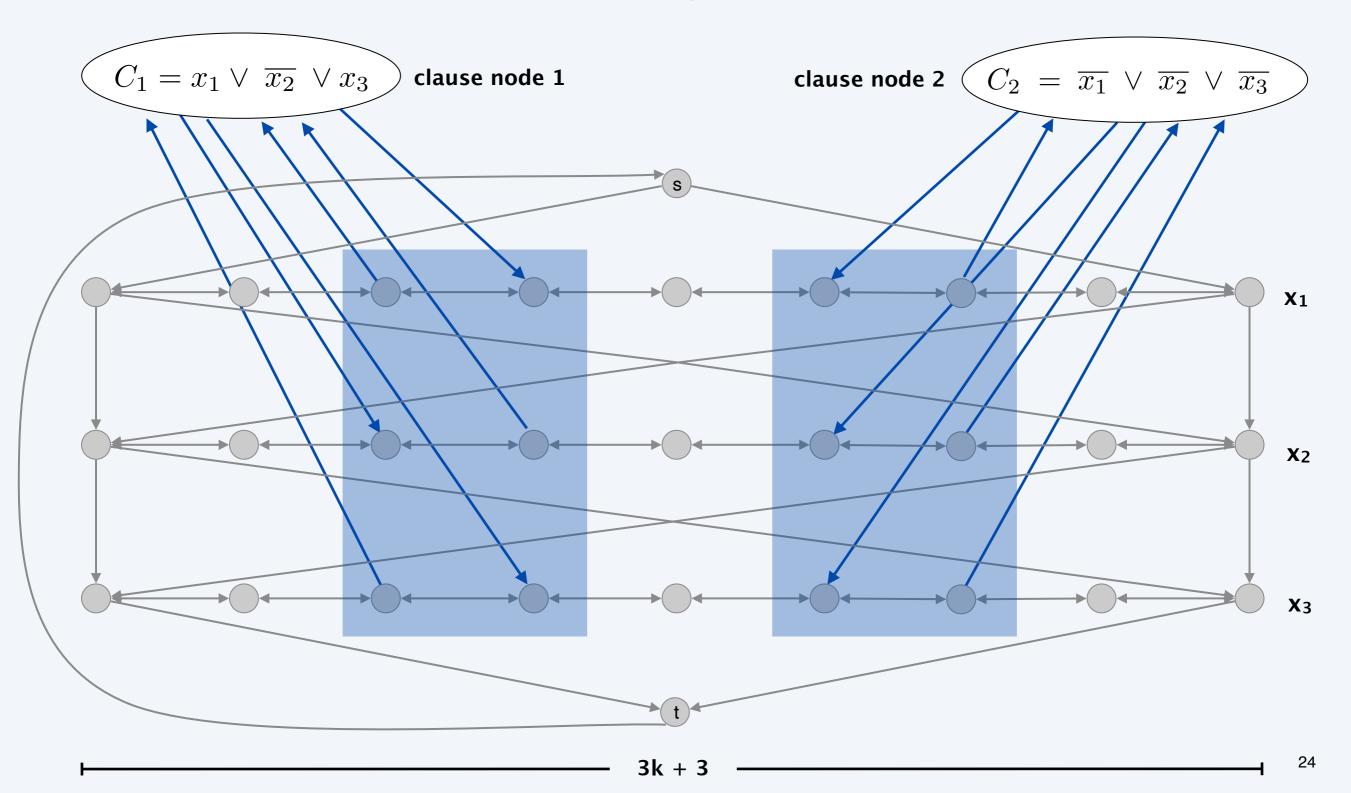
Construction. Given 3-SAT instance Φ with *n* variables x_i and *k* clauses.

- Construct G to have 2^n Hamilton cycles.
- Intuition: traverse path *i* from left to right \Leftrightarrow set variable $x_i = true$.



Construction. Given 3-SAT instance Φ with *n* variables x_i and *k* clauses.

• For each clause, add a node and 6 edges.



Lemma. Φ is satisfiable iff *G* has a Hamilton cycle.

Pf. \Rightarrow

- Suppose 3-SAT instance has satisfying assignment x^* .
- Then, define Hamilton cycle in *G* as follows:
 - if $x_i^* = true$, traverse row *i* from left to right
 - if $x_i^* = false$, traverse row *i* from right to left
 - for each clause C_j, there will be at least one row *i* in which we are going in "correct" direction to splice clause node C_j into cycle
 (and we splice in C_j exactly once)

Lemma. Φ is satisfiable iff *G* has a Hamilton cycle.

- Suppose G has a Hamilton cycle Γ .
- If Γ enters clause node C_i , it must depart on mate edge.
 - nodes immediately before and after C_i are connected by an edge $e \in E$
 - removing C_j from cycle, and replacing it with edge e yields Hamilton cycle on $G \{ C_j \}$
- Continuing in this way, we are left with a Hamilton cycle Γ' in

 $G \ - \{ \, C_1 \, , C_2 \, , \, \ldots , \, \, C_k \, \}.$

- Set $x_i^* = true$ iff Γ' traverses row *i* left to right.
- Since Γ visits each clause node C_j, at least one of the paths is traversed in "correct" direction, and each clause is satisfied.

Final