
More Dynamic
Programming

Common Subproblems

• Opt(i) - Opt solution using x1,..,xi. (eg LIS,
longest path).

• Opt(i,j) - Opt solution using xi,...,xj. (eg RNA)

• Opt(i,j) - Opt solution using x1,...,xi and
y1,...,yj. (eg Edit distance)

• Opt(r) - Opt solution using subtree rooted at r.
(eg Vertex cover on trees).

Longest increasing
subsequence

Given: sequence of numbers
Goal: find longest increasing subsequence

41 , 22 , 9 , 15 , 23 , 39 , 21 , 56 , 24 , 34 , 59 , 23 , 60 , 39 , 87 , 23 , 90

Longest increasing
subsequence

Given: sequence of numbers
Goal: find longest increasing subsequence

41 , 22 , 9 , 15 , 23 , 39 , 21 , 56 , 24 , 34 , 59 , 23 , 60 , 39 , 87 , 23 , 90

longest increasing subsequence: length 9

Longest increasing
subsequence

Given: sequence of numbers x1,..,xn

Goal: find longest increasing subsequence

Subproblems: l(j) - length of longest increasing
subseq. ending at j.

41 , 22 , 9 , 15 , 23 , 39 , 21 , 56 , 24 , 34 , 59 , 23 , 60 , 39 , 87 , 23 , 90

Longest increasing
subsequence

Given: sequence of numbers x1,..,xn

Goal: find longest increasing subsequence

Subproblems: l(j) - length of longest increasing
subseq. ending at j.

41 , 22 , 9 , 15 , 23 , 39 , 21 , 56 , 24 , 34 , 59 , 23 , 60 , 39 , 87 , 23 , 90

Observation: if longest inc. sub. ending at j is
xi1,xi2,...,xi,xj then l(j) = l(i)+1

Longest increasing
subsequence

Given: sequence of numbers x1,..,xn

Goal: find longest increasing subsequence

Subproblems: l(j) - length of longest increasing
subseq. ending at j.

41 , 22 , 9 , 15 , 23 , 39 , 21 , 56 , 24 , 34 , 59 , 23 , 60 , 39 , 87 , 23 , 90

Observation: if longest inc. sub. ending at j is
xi1,xi2,...,xi,xj then l(j) = l(i)+1

Claim: l(j) = { 1
1+max l(i)

i: i<j, xi<xj

if xi≥xj, for all i<j
else

Longest increasing
subsequence

Subproblems: l(j) - length of longest increasing
subseq. ending at j.

Claim: l(j) = { 1
1+max l(i)

i: i<j, xi<xj

if xi≥xj, for all i<j
else

Algorithm:
for j=1,...,n

if xi≥xj, for all i<j, set l(j) = 1
else, set l(j) = 1+max l(i)

output max l(j)
j

i: i<j, xi<xj

Running time
O(n2)

All pairs shortest path in directed
graph with no negative cycles.

Given: directed graph, (possibly negative) edge
weights

Goal: find shortest path between every two vertices

Bellman-Ford algorithm can do this in time O(n2m)

All pairs shortest path in directed
graph with weighted edges

Given: directed graph, (possibly negative) edge
weights

Goal: find shortest path between every two vertices

Subproblems: d(i,j,k) - length of shortest path that
starts at i, ends at j and visits only {1,2,...,k} in the
middle.

Goal: find shortest path between every two vertices

i j

vertices {1,2,...,k}

Subproblems: d(i,j,k) - length of shortest path that
starts at i, ends at j and every other vertex on path is in
{1,2,...,k}.

Goal: find shortest path between every two vertices

Subproblems: d(i,j,k) - length of shortest path that
starts at i, ends at j and every other vertex on path is in
{1,2,...,k}.

i j

vertices {1,2,...,k}

Subproblems: d(i,j,k) - length of shortest path that
starts at i, ends at j and every other vertex on path is in
{1,2,...,k}.

Observation:
if shortest path for d(i,j,k) does not visit k, then
 d(i,j,k) = d(i,j,k-1).

Otherwise,
 d(i,j,k) = d(i,k,k-1) + d(k,j,k-1)

i j
vertices {1,2,...,k-1}

i jvertices {1,2,...,k-1} vertices {1,2,...,k-1}

k

Subproblems: d(i,j,k) - length of shortest path that
starts at i, ends at j and every other vertex on path is in
{1,2,...,k}.

Claim: d(i,j,k) = min{d(i,j,k-1), d(i,k,k-1)+d(k,j,k-1)}

for all i,j=1,...,n
set d(i,j,0) = weight of edge (i,j)

for k=1,...,n
for all i,j=1,...,n
set d(i,j,k) = min{d(i,j,k-1),d(i,k,k-1)+d(k,j,k-1)}

Algorithm:

Running time O(n3)

