More Dynamic Programming

Common Subproblems

- Opt(i) - Opt solution using $\mathrm{x}_{1}, . ., \mathrm{x}_{\mathrm{i}}$. (eg LIS, longest path).
- Opt(i, j) - Opt solution using $\mathrm{x}_{\mathrm{i}}, \ldots, \mathrm{x}_{\mathrm{j}}$. (eg RNA)
- Opt(i, j) - Opt solution using $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{i}}$ and $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{j}}$. (eg Edit distance)
- Opt(r) - Opt solution using subtree rooted at r. (eg Vertex cover on trees).

Longest increasing

subsequence

Given: sequence of numbers
Goal: find longest increasing subsequence
$41,22,9,15,23,39,21,56,24,34,59,23,60,39,87,23,90$

Longest increasing

subsequence

Given: sequence of numbers
Goal: find longest increasing subsequence
$41,22,9,15,23,39,21,56,24,34,59,23,60,39,87,23,90$
longest increasing subsequence: length 9

Longest increasing

subsequence

Given: sequence of numbers $\mathrm{x}_{1}, . ., \mathrm{x}_{\mathrm{n}}$
Goal: find longest increasing subsequence
$41,22,9,15,23,39,21,56,24,34,59,23,60,39,87,23,90$
Subproblems: l(j) - length of longest increasing subseq. ending at j.

Longest increasing

subsequence

Given: sequence of numbers $\mathrm{x}_{1}, . ., \mathrm{x}_{\mathrm{n}}$
Goal: find longest increasing subsequence
$41,22,9,15,23,39,21,56,24,34,59,23,60,39,87,23,90$
Subproblems: l(j) - length of longest increasing subseq. ending at j.

Observation: if longest inc. sub. ending at j is $\mathrm{x}_{\mathrm{i} 1}, \mathrm{x}_{\mathrm{i} 2}, \ldots, \mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}$ then $\mathrm{I}(\mathrm{j})=\mathrm{I}(\mathrm{i})+1$

Longest increasing

subsequence

Given: sequence of numbers $\mathrm{x}_{1}, . ., \mathrm{x}_{\mathrm{n}}$ Goal: find longest increasing subsequence $41,22,9,15,23,39,21,56,24,34,59,23,60,39,87,23,90$

Subproblems: l(j) - length of longest increasing subseq. ending at j.

Observation: if longest inc. sub. ending at j is $\mathrm{x}_{\mathrm{i} 1}, \mathrm{x}_{\mathrm{i} 2}, \ldots, \mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}$ then $\mathrm{I}(\mathrm{j})=\mathrm{I}(\mathrm{i})+1$

Claim: $I(j)= \begin{cases}1 & \text { if } x_{i} \geq x_{1} \\ 1+\max _{i<i, x \times \times x} I(i) & \text { else }\end{cases}$

Longest increasing

subsequence

Subproblems: I(j) - length of longest increasing subseq. ending at j.
Claim: $I(j)= \begin{cases}1 & \text { if } x_{i} \geq x_{j}, \text { for all } i<j \\ 1+\max _{i: \ll j, x \ll j} I(i) & \text { else }\end{cases}$
Algorithm:

$$
\begin{aligned}
& \text { for } j=1, \ldots, n \\
& \text { if } x_{i} \geq x_{j}, \text { for all } i<j \text {, set } I(j)=1 \quad O\left(n^{2}\right) \\
& \quad \text { else, set } I(j)=1+\max _{i: i, 1, x \times x)}(i)
\end{aligned}
$$

Running time
output max I(j)

All pairs shortest path in directed graph with no negative cycles.

Given: directed graph, (possibly negative) edge weights

Goal: find shortest path between every two vertices

Bellman-Ford algorithm can do this in time $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~m}\right)$

All pairs shortest path in directed graph with weighted edges

Given: directed graph, (possibly negative) edge weights

Goal: find shortest path between every two vertices
Subproblems: $\mathrm{d}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ - length of shortest path that starts at i , ends at j and visits only $\{1,2, \ldots, k\}$ in the middle.

Goal: find shortest path between every two vertices
Subproblems: $\mathrm{d}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ - length of shortest path that starts at i , ends at j and every other vertex on path is in $\{1,2, \ldots, k\}$.

Goal: find shortest path between every two vertices
Subproblems: $\mathrm{d}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ - length of shortest path that starts at i , ends at j and every other vertex on path is in $\{1,2, \ldots, k\}$.

Subproblems: $\mathrm{d}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ - length of shortest path that starts at i, ends at j and every other vertex on path is in $\{1,2, \ldots, k\}$.
Observation:
if shortest path for $\mathrm{d}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ does not visit k , then

$$
d(i, j, k)=d(i, j, k-1)
$$

Otherwise,

$$
d(i, j, k)=d(i, k, k-1)+d(k, j, k-1)
$$

Subproblems: $\mathrm{d}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ - length of shortest path that starts at i, ends at j and every other vertex on path is in $\{1,2, \ldots, k\}$.

Claim: $d(i, j, k)=\min \{d(i, j, k-1), d(i, k, k-1)+d(k, j, k-1)\}$

Algorithm:

$$
\begin{aligned}
& \text { for all } i, j=1, \ldots, n \\
& \quad \text { set } d(i, j, 0)=\text { weight of edge }(i, j) \\
& \text { for } k=1, \ldots, n \\
& \quad \text { for } \operatorname{all} i, j=1, \ldots, n \\
& \quad \text { set } d(i, j, k)=\min \{d(i, j, k-1), d(i, k, k-1)+d(k, j, k-1)\}
\end{aligned}
$$

Running time $O\left(n^{3}\right)$

