More Dynamic
Programming

Common Subproblems

® Opt(i) - Opt solution using xi,..,Xi. (eg LIS,
longest path).

® Opt(i,j) - Opt solution using Xx;,...,Xj. (eg RNA)

® Opt(i,j) - Opt solution using xi,...,Xi and
v1,..,,Yj. (eg Edit distance)

® Opt(r) - Opt solution using subtree rooted at .
(eg Vertex cover on trees).

Longest increasing
subsequence

Given: sequence of numbers
Goal: find longest increasing subsequence

41 ,22,9,15, 23,39,21,56,24,34,59,23,60,39,87,23,90

Longest increasing
subsequence

Given: sequence of numbers
Goal: find longest increasing subsequence

41,22,9,15, 23 ,39,21,56,24 ,34 .59 23,60 ,39,87,23,90

longest increasing subsequence: length 9

Longest increasing
subsequence

Given: sequence of numbers Xi,..,Xn
Goal: find longest increasing subsequence

41,22,9,15, 23,39,21,56,24,34,59,23,60,39,87,23,90

Subproblems: [(j) - length of longest increasing
subseq. ending at j.

Longest increasing
subsequence

Given: sequence of numbers Xi,..,Xn
Goal: find longest increasing subsequence

41,22,9,15, 23,39,21,56,24,34,59,23,60,39,87,23,90

Subproblems: [(j) - length of longest increasing
subseq. ending at j.

Observation: if longest inc. sub. ending at j is
Xi1,Xi2,..,Xi,Xj then 1(j) = 1(i)+1

Longest increasing
subsequence

Given: sequence of numbers Xi,..,Xn
Goal: find longest increasing subsequence

41,22,9,15, 23,39,21,56,24,34,59,23,60,39,87,23,90

Subproblems: [(j) - length of longest increasing
subseq. ending at j.

Observation: if longest inc. sub. ending at j is
Xi1,Xi2,..,Xi,Xj then 1(j) = 1(i)+1

- | 1 if xi>x;, for all i<j
Claim: |(j) = {1+.m_ax I(i) else

Longest increasing
subsequence

Subproblems: I(j) - length of longest increasing
subseq. ending at j.

- | 1 if xi>x;, for all i<j
Claim: I(j) = {1+max (i) else

I 1<], Xi<Xj

Algorithm:

for j=1,...n Running time
if xi>x;, for all i<j, set1(j) =1 O(n?)
else, set I(j) = 1+’D§‘ZSX.'(‘)

output max [(j)
]

All pairs shortest path in directed
graph with no negative cycles.

Given: directed graph, (possibly negative) edge
weights

Goal: find shortest path between every two vertices

Bellman-Ford algorithm can do this in time O(n2m)

All pairs shortest path in directed
graph with weighted edges

Given: directed graph, (possibly negative) edge
weights

Goal: find shortest path between every two vertices

Subproblems: d(i,j, k) - length of shortest path that

starts at i, ends at j and visits only {1,2,...,k} in the
middle.

Goal: find shortest path between every two vertices

Subproblems: d(i,j,k) - length of shortest path that

starts at i, ends at j and every other vertex on path is in
{1,2,...,k}.

vertices {1,25+

Goal: find shortest path between every two vertices

Subproblems: d(i,j,k) - length of shortest path that

starts at i, ends at j and every other vertex on path is in
{1,2,...,k}.

vertices {1,25+

Subproblems: d(i,j,k) - length of shortest path that
starts at i, ends at j and every other vertex on path is in
{1,2,...,k}.

Observation:
if shortest path for d(i,j, k) does not visit k, then
d(IIJIk) — d(IIJIk-]')

’Q—"—"—*—ﬁ—&—»)—»‘—» O
| j

vertices {1,2,...,k-1}

Otherwise,
d(IIJIk) = d(llklk-]') T d(kIJIk-]')

Kk
—(0—0—0— 0——>0—»;}~0
verti 2,.k1} vertices¥t+2k-1}

Subproblems: d(i,j, k) - length of shortest path that
starts at i, ends at j and every other vertex on path is in
{1,2,...,k}.

Claim: d(i j,k) = min{d(i,j,k-1), d(i,k k-1)+d(k,j,k-1)}

Algorithm:
for all i,j=1,...,n
set d(i,j,0) = weight of edge (i,j)
for k=1,...,n
for all i,j=1,...,n
set d(i,j,k) = min{d(i,j,k-1),d(i,k,k-1)+d(k,j, k-1)}

Running time 0O(n3)

