
More Dynamic 
Programming



Common Subproblems

• Opt(i) - Opt solution using x1,..,xi. (eg LIS, 
longest path). 

• Opt(i,j) - Opt solution using xi,...,xj. (eg RNA) 

• Opt(i,j) - Opt solution using x1,...,xi and 
y1,...,yj. (eg Edit distance) 

• Opt(r) - Opt solution using subtree rooted at r. 
(eg Vertex cover on trees).



Longest increasing 
subsequence

Given: sequence of numbers
Goal: find longest increasing subsequence

41 , 22 , 9 , 15 ,  23 , 39 , 21 , 56 , 24 , 34 , 59 , 23 , 60 , 39 , 87 , 23 , 90
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longest increasing subsequence: length 9
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Longest increasing 
subsequence

Subproblems: l(j) - length of longest increasing 
subseq. ending at j.

Claim: l(j) = { 1
1+max l(i)

i: i<j, xi<xj

if xi≥xj, for all i<j
else

Algorithm: 
for j=1,...,n

if xi≥xj, for all i<j, set l(j) = 1 
else, set l(j) = 1+max l(i) 

output max l(j)
j

i: i<j, xi<xj

Running time
O(n2) 



All pairs shortest path in directed 
graph with no negative cycles.

Given: directed graph, (possibly negative) edge 
weights

Goal: find shortest path between every two vertices

Bellman-Ford algorithm can do this in time O(n2m)



All pairs shortest path in directed 
graph with weighted edges

Given: directed graph, (possibly negative) edge 
weights

Goal: find shortest path between every two vertices

Subproblems: d(i,j,k) - length of shortest path that 
starts at i, ends at j and visits only {1,2,...,k} in the 
middle.



Goal: find shortest path between every two vertices

i j

vertices {1,2,...,k}

Subproblems: d(i,j,k) - length of shortest path that 
starts at i, ends at j and every other vertex on path is in 
{1,2,...,k}.
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Subproblems: d(i,j,k) - length of shortest path that 
starts at i, ends at j and every other vertex on path is in 
{1,2,...,k}.

Observation:  
if shortest path for d(i,j,k) does not visit k, then  
         d(i,j,k) = d(i,j,k-1). 

Otherwise,  
         d(i,j,k) = d(i,k,k-1) + d(k,j,k-1)

i j
vertices {1,2,...,k-1}

i jvertices {1,2,...,k-1} vertices {1,2,...,k-1}

k



Subproblems: d(i,j,k) - length of shortest path that 
starts at i, ends at j and every other vertex on path is in 
{1,2,...,k}.

Claim: d(i,j,k) = min{d(i,j,k-1), d(i,k,k-1)+d(k,j,k-1)}

for all i,j=1,...,n
set d(i,j,0) = weight of edge (i,j)

for k=1,...,n
for all i,j=1,...,n
set d(i,j,k) = min{d(i,j,k-1),d(i,k,k-1)+d(k,j,k-1)}

Algorithm: 

Running time O(n3) 


