Traveling Salesperson Problem

- **Given**: n cities, and the pairwise distances d_{ij}
- **Goal**: find shortest tour that visits every city at least once

Traveling Salesperson Problem

- **Given**: n cities, and the pairwise distances d_{ij}
- **Goal**: find shortest tour that visits every city at least once
- **Brute force search algorithm:** n! ~ 2^{nlogn} time.

Traveling Salesperson Problem

Given: n cities, and the pairwise distances d_{ij}

Goal: find shortest tour that visits every city at least once

Brute force search: $n! \sim 2^{n\log n}$ time.

Subproblems: T(v,S) - length of shortest tour that visits all cities of the set S and ends at v.

Given: n cities, and the pairwise distances d_{ij}

Goal: find shortest tour that visits every city at least once

Subproblems: T(v,S) - length of shortest tour that visits all cities of the set S and ends at v.

Observation:

if shortest tour for T(v,S) visits city u right before v, then

 $T(v,S) = T(u,S-v) + d_{uv}$

Given: n cities, and the pairwise distances d_{ij}

Goal: find shortest tour that visits every city at least once

Subproblems: T(v,S) - length of shortest tour that visits all cities of the set S and ends at v.

Algorithm:

for v=1,...,n set T(v,{v}) = 0 for k=2,...,n for all sets of cities S, |S|=kfor all v in S set T(v,S) = min T(u,S-v)+duv <u>Running time</u> O(n² 2ⁿ)

Given: A tree

Goal: find smallest vertex cover (vertices that touch all edges)

Given: A tree

Goal: find smallest vertex cover (vertices that touch all edges)

Subproblems: V(r) - size of vertex cover at subtree rooted at r.

Subproblems: V(r) - size of vertex cover at subtree rooted at r.

Case 1: Cover realizing V(r) does not contain r. Then it must contain children(r).

V(r)= #children(r) + sum over grandchilren g V(g)

Case 2: Cover realizing V(r) does contain r. V(r) = 1+sum over children c V(c)

Subproblems: V(r) - size of vertex cover at subtree rooted at r.

Case 1: Cover realizing V(r) does not contain r. Then it must contain children(r). V(r)= #children(r) + sum over grandchilren g V(g)

Case 2: Cover realizing V(r) does contain r. V(r) = 1+sum over children c V(c)

Rough Algorithm:

<u>Running time</u> O(n)

For each vertex r, in decreasing order of depth, set $V(r) = min\{\#children(r)+\Sigma V(g), 1+\Sigma V(c)\}$

g, grandchild of r

c, child of r

Chain Matrix Multiplication

- **Given**: n matrices M₁,M₂,...,M_n
- **Goal**: compute product M₁,M₂,...,M_n (in what order should we multiply?)
- **Example**: To compute VWXYZ we could multiply V((WX)(YZ)) or (V(W(XY)))Z or ...
- **Basic operations**: multiplying (a by b) matrix with (b by c) matrix gives (a by c) matrix in abc time.

- **Given**: n matrices M₁,M₂,...,M_n
- **Goal**: compute product M₁,M₂,...,M_n (in what order should we multiply?)
- **Example**: To compute VWXYZ we could multiply V((WX)(YZ)) or (V(W(XY)))Z or ...
- **Basic operations**: multiplying (a by b) matrix with (b by c) matrix gives (a by c) matrix in abc time.

Subproblems: C(i,j) - time to compute M_iM_{i+1}...M_j

Given: n matrices M₁,...,M_n, i'th matrix of size (m_i by m_{i+1})

Goal: compute product M₁,M₂,...,M_n (in what order should we multiply?)

Basic operations: multiplying (a by b) matrix with (b by c) matrix gives (a by c) matrix in abc time.

Subproblems: C(i,j) - time to compute M_iM_{i+1}...M_j

Observation: If the final multiplication in optimal solution is between $(M_i...M_k)(M_{k+1}...M_j)$, then $C(i,j) = C(i,k)+C(k,j)+n_in_{k+1}n_j$.

Basic operations: multiplying (a by b) matrix with (b by c) matrix gives (a by c) matrix in abc time.

Subproblems: C(i,j) - time to compute M_iM_{i+1}...M_j

Observation: If the final multiplication in optimal solution is between $(M_i...M_k)(M_{k+1}...M_j)$, then $C(i,j) = C(i,k)+C(k+1,j)+m_im_{k+1}m_j$.

Algorithm: Running time $O(n^3)$ for i=1,2,...,n-1, set C(i,i)=0 for s=1,2,...,n-1, i=1,...,n-1 set C(i,i+s)=min C(i,k)+C(k+1,i+s)+mim_{k+1}m_{i+s}

Common Subproblems

- Opt(i) Opt solution using x₁,..,x_i. (eg LIS, longest path).
- Opt(i,j) Opt solution using x_i,...,x_j. (eg RNA)
- Opt(i,j) Opt solution using x₁,...,x_i and y₁,...,y_j. (eg Edit distance)
- Opt(r) Opt solution using subtree rooted at r. (eg Vertex cover on trees).