Traveling Salesperson Problem

Given: n cities, and the pairwise distances d_{ij}
Goal: find shortest tour that visits every city at least once

Traveling Salesperson Problem

Given: n cities, and the pairwise distances d_{ij}
Goal: find shortest tour that visits every city at least once

Brute force search algorithm: $\mathrm{n}!\sim 2^{\text {nlogn }}$ time.

Traveling Salesperson Problem

Given: n cities, and the pairwise distances d_{ij}
Goal: find shortest tour that visits every city at least once

Brute force search: n! ~ $2^{\text {nlogn time }}$.
Subproblems: $\mathrm{T}(\mathrm{v}, \mathrm{S})$ - length of shortest tour that visits all cities of the set S and ends at v.

Given: n cities, and the pairwise distances d_{ij}
Goal: find shortest tour that visits every city at least once

Subproblems: $T(v, S)$ - length of shortest tour that visits all cities of the set S and ends at v .

Observation:

if shortest tour for $\mathrm{T}(\mathrm{v}, \mathrm{S})$ visits city u right before v , then

$$
T(v, S)=T(u, S-v)+d_{u v}
$$

Given: n cities, and the pairwise distances d_{ij}
Goal: find shortest tour that visits every city at least once

Subproblems: $\mathrm{T}(\mathrm{v}, \mathrm{S})$ - length of shortest tour that visits all cities of the set S and ends at v.

Algorithm:

$$
\begin{array}{lr}
\text { for } v=1, \ldots, n & \text { Running time } \\
\begin{array}{l}
\text { set } T(v,\{v\})=0 \\
\text { for } k=2, \ldots, n \\
\text { for all sets of cities } S,|S|=k \\
\\
\text { for all } v \text { in } S \\
\quad \operatorname{set} T(v, S)=\min _{u \text { in } s-v} T(u, S-v)+d_{u v}
\end{array}
\end{array}
$$

Vertex Cover on Acyclic Graphs

Given: A tree
Goal: find smallest vertex cover (vertices that touch all edges)

Vertex Cover on Acyclic Graphs

Given: A tree
Goal: find smallest vertex cover (vertices that touch all edges)
Subproblems: $V(r)$ - size of vertex cover at subtree rooted at r.

Vertex Cover on Acyclic Graphs

Subproblems: $\mathrm{V}(\mathrm{r})$ - size of vertex cover at subtree rooted at r .

Case 1: Cover realizing $V(r)$ does not contain r. Then it must contain children (r).
$\mathrm{V}(\mathrm{r})=$ \#children $(\mathrm{r})+$ sum over grandchilren $\mathrm{g} \mathrm{V}(\mathrm{g})$
Case 2: Cover realizing $\mathrm{V}(\mathrm{r})$ does contain

Vertex Cover on Acyclic Graphs

Subproblems: $\mathrm{V}(\mathrm{r})$ - size of vertex cover at subtree rooted at r .

Case 1: Cover realizing $V(r)$ does not contain r. Then it must contain children (r).
$\mathrm{V}(\mathrm{r})=$ \#children $(\mathrm{r})+$ sum over grandchilren $\mathrm{g} \mathrm{V}(\mathrm{g})$
Case 2: Cover realizing $V(r)$ does contain r.
$\mathrm{V}(\mathrm{r})=1+$ sum over children $\mathrm{c} \mathrm{V}(\mathrm{c})$

Rough Algorithm:

Running time O(n)

For each vertex r, in decreasing order of depth, set

$$
\begin{aligned}
& \mathrm{V}(\mathrm{r})=\min \{\# \text { children }(\mathrm{r})+\Sigma \mathrm{V}(\mathrm{~g}), 1+\Sigma \mathrm{V}(\mathrm{c})\} \\
& g \text {, grandchild of } r \quad c \text {, child of } r
\end{aligned}
$$

Chain Matrix Multiplication

Given: n matrices $M_{1}, M_{2}, \ldots, M_{n}$
Goal: compute product $M_{1}, M_{2}, \ldots, M_{n}$ (in what order should we multiply?)
Example: To compute VWXYZ we could multiply $\mathrm{V}((\mathrm{WX})(\mathrm{YZ}))$ or $(\mathrm{V}(\mathrm{W}(\mathrm{XY}))) \mathrm{Z}$ or ...

Basic operations: multiplying (a by b) matrix with (b by c) matrix gives (a by c) matrix in abc time.

Chain Matrix Multiplication

Given: n matrices $M_{1}, M_{2}, \ldots, M_{n}$
Goal: compute product $M_{1}, M_{2}, \ldots, M_{n}$ (in what order should we multiply?)

Example: To compute VWXYZ we could multiply $\mathrm{V}((\mathrm{WX})(\mathrm{YZ}))$ or $(\mathrm{V}(\mathrm{W}(\mathrm{XY}))) \mathrm{Z}$ or ...

Basic operations: multiplying (a by b) matrix with (b by c) matrix gives (a by c) matrix in abc time.

Subproblems: $C(i, j)$ - time to compute $M_{i} M_{i+1} \ldots M_{j}$

Given: n matrices M_{1}, \ldots, M_{n}, i ith matrix of size (m_{i} by m_{i+1})
Goal: compute product $\mathrm{M}_{1}, \mathrm{M}_{2}, \ldots, \mathrm{M}_{\mathrm{n}}$ (in what order should we multiply?)

Basic operations: multiplying (a by b) matrix with (b by c) matrix gives (a by c) matrix in abc time.

Subproblems: $C(i, j)$ - time to compute $M_{i} M_{i+1} \ldots M_{j}$
Observation: If the final multiplication in optimal solution is between $\left(M_{i} \ldots M_{k}\right)\left(M_{k+1} \ldots M_{j}\right)$, then
$C(i, j)=C(i, k)+C(k, j)+n_{i} n_{k+1} n_{j}$.

Basic operations: multiplying (a by b) matrix with (b by c) matrix gives (a by c) matrix in abc time.
Subproblems: $C(i, j)$ - time to compute $M_{i} M_{i+1} \ldots M_{j}$
Observation: If the final multiplication in optimal solution is between $\left(M_{i} \ldots M_{k}\right)\left(M_{k+1} \ldots M_{j}\right)$, then
$C(i, j)=C(i, k)+C(k+1, j)+m_{i} m_{k+1} m_{j}$.

Algorithm:
Running time
$\mathrm{O}\left(\mathrm{n}^{3}\right)$
for $i=1,2, \ldots, n-1$, set $C(i, i)=0$
for $s=1,2, \ldots, n-1, i=1, \ldots, n-1$
set $C(i, i+s)=\min _{i<k<s} C(i, k)+C(k+1, i+s)+m_{i} m_{k+1} m_{i+s}$

Common Subproblems

- Opt(i) - Opt solution using $\mathrm{x}_{1}, . ., \mathrm{x}_{\mathrm{i}}$. (eg LIS, longest path).
- Opt(i, j) - Opt solution using $\mathrm{x}_{\mathrm{i}}, \ldots, \mathrm{x}_{\mathrm{j}}$. (eg RNA)
- Opt(i, j) - Opt solution using $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{i}}$ and $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{j}}$. (eg Edit distance)
- Opt(r) - Opt solution using subtree rooted at r. (eg Vertex cover on trees).

