Randomized Algorithms

- Algorithms that make random choices during the computation
- Often faster, simpler than traditional algorithms

Miller-Rabin primality test

Input: n-bit number x.
Goal: decide whether x is a prime number or not.

- Extremely important problem: many applications in cryptography.
- There is a deterministic polynomial time algorithm (AKS-2000), running time is $O\left(n^{12}\right)$

The test (running time $O\left(n^{2}\right)$):

1. Express $x-1=2^{s} \cdot d$, where d is odd.
2. Pick $a \in\{1,2, \ldots, x-1\}$ uniformly at random.
3. If for some $t=1,2, \ldots, s, a^{2^{t} \cdot d}=1 \bmod x$, yet $a^{2^{t-1} \cdot d} \neq-1 \bmod x$, conclude that x is not prime. Otherwise conclude that x is prime.

Theorem: If x is prime, the test concludes that x is prime with probability 1 . If x is not prime, the text concludes not prime with probability at least $3 / 4$.

Min-Cut

Input: An undirected graph.
Goal: Partition the vertices of the graph in two sets A, B, to minimize the number of edges going from A to B.

- You can use flows and cuts, but
- There is a simpler randomized algorithm

Karger's Algorithm:

1. In each step, pick a uniformly random edge and contract it.
2. Stop when you have just two vertices.
3. Output the corresponding cut.

Karger's Algorithm:

1. In each step, pick a uniformly random edge and contract it.
2. Stop when you have just two vertices.
3. Output the corresponding cut.

Thm: The algorithm finds the min-cut with probability at least $2 /(n(n-1))$.
Pf:

- Suppose the min-cut cuts k edges.
- Then every vertex must degree $\geq k$, or else that vertex would already give a smaller min-cut.
- So, the number of edges in the graph is at least $n k / 2$.
- The probability we pick one of the edges of the min-cut is at most

$$
k /(n k / 2)=2 / n
$$

- The probability that an edge of the min-cut is never picked is at least
$(1-2 / n)(1-2 /(n-1)) \ldots(1-2 / 3)$

$$
=((n-2) / n) \cdot((n-3) /(n-1)) \cdot((n-4) /(n-2)) \ldots=2 /(n(n-1)) .
$$

Karger's Algorithm:

1. In each step, pick a uniformly random edge and contract it.
2. Stop when you have just two vertices.
3. Output the corresponding cut.

Final algorithm: Repeat the above algorithm 100n($n-1$) times. Output the best cut that you find.

Graph coloring

Input: An undirected graph.
Goal: Find a 3-coloring of vertices that maximizes the number of edges that get 2 colors.

Algorithm:

Randomly color the vertices of the graph red,blue,green.

Thm: The expected number of vertices that are properly colored is at least $2 \mathrm{~m} / 3$.
Pf: For each edge e, define $X_{e}=1$ if the edge e gets two colors, and $X_{e}=0$ otherwise.
$\mathbb{E}\left[X_{e}\right]=\operatorname{Pr}\left[X_{e}=1\right] \cdot 1=2 / 3$.
So, by linearity of expectation,
$\mathbb{E}\left[\sum_{e} X_{e}\right]=\sum_{e} \mathbb{E}\left[X_{e}\right]=2 m / 3$.
No known poly time algorithm achieves $>2 m / 3$.

Dominating set

Input: An undirected graph, every vertex has degree $\geq \Delta$.
Goal: Find a small set of vertices S such that every vertex is either in S or is a neighbor of S.

Algorithm:

1. Randomly include each vertex in the set X, with probability p.
2. Let Y be the set vertices not in X and not a neighbor of X.
3. Output $X \cup Y$.

Claim: The expected size of $X \cup Y$ is at most $p n+n(1-p)^{1+\Delta} \leq p n+e^{-p(1+\Delta)} n$. Set $p=\ln (1+\Delta) /(1+\Delta)$, to get expected size at most $n(1+\ln (1+\Delta)) /(1+\Delta)$.

Pf of Claim:

1. The expected size of X is $p n$.
2. For each vertex, the probability that it is included in Y is at most $(1-p)^{1+\Delta}$.
3. So the expected size of Y is $n(1-p)^{1+\Delta}$.
