Efficient Implementation

Efficient implementation. We describe $O(n^2)$ time implementation.

Note: this is linear in the size of the input.

Representing men and women.

- Assume men are named 1, ..., n.
- Assume women are named 1', ..., n'.

Engagements.

- Maintain a list of free men, e.g., in a queue.
- Maintain two arrays wife[m], and husband[w].
 - set entry to ${\scriptstyle 0}$ if unmatched
 - if m matched to w then wife[m]=w and husband[w]=m

Men proposing.

- For each man, maintain a list of women, ordered by preference.
- Maintain an array count [m] that counts the number of proposals made by man m.

Efficient Implementation

Women rejecting/accepting.

- Does woman w prefer man m to man m'?
- For each woman, create inverse of preference list of men.
- Constant time access for each query after O(n) preprocessing.

Amy	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th
Pref	8	3	7	1	4	5	6	2
Amy	1	2	3	4	5	6	7	8
Inverse	4 th	8 th	2 nd	5 th	6 th	7 th	3 rd	1 st

Amy prefers man 3 to 6 since inverse[3] < inverse[6]

2 7

Understanding the Solution

Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?

An instance with two stable matchings.

- A-X, B-Y, C-Z.
- A-Y, B-X, C-Z.

	1 st	2 nd	3 rd
Xavier	А	В	С
Yancey	В	А	С
Zeus	А	В	С

	1 st	2 nd	3 rd
Amy	У	Х	Ζ
Bertha	Х	У	Ζ
Clare	Х	У	Z

Understanding the Solution

Q Do all executions of Gale-Shapley yield the same stable matching?

Def. Man m is a valid partner of woman w if there exists some stable matching in which they are matched.

	1 st	2 nd	3 rd
Xavier	А	С	В
Yancey	А	В	С
Zeus	А	В	С

	1 st	2 nd	3 rd
Amy	У	Ζ	Х
Bertha	У	Z	Х
Clare	У	Х	Z

Q. Are X-A valid partners?

Understanding the Solution

Q. Do all executions of Gale-Shapley yield same stable matching?

Def. Man m is valid partner of woman w if exists some stable matching in which they are matched.

Man-optimal assignment. Each man receives best valid partner.

Claim. All executions of GS yield man-optimal assignment, which is a stable matching!

- No reason a priori to believe that man-optimal assignment is a matching, let alone stable.
- Simultaneously best for every man.

Man Optimality

Claim. GS matching S* is man-optimal.

- Pf. (by contradiction)
 - Suppose some man is paired with someone other than best partner.
 Men propose in decreasing order of preference ⇒ some man is rejected by valid partner.
 - Let Y be first such man, and let A be first valid woman that rejects him.
 - Let S be a stable matching where A and Y are matched.
 - When Y is rejected, A forms (or reaffirms) engagement with a man, say Z, whom she prefers to Y.
 - Let B be Z's partner in S.
 - Z matched to A and not yet rejected by any valid partner at the point when Y is rejected by A. Thus, Z prefers A to B.
 - But A prefers Z to Y.
 - Thus A-Z is unstable in S.

since this is first rejection by a valid partner of anyone

. . .

Stable Matching Summary

Gale-Shapley algorithm. Finds a stable matching in $O(n^2)$ time.

Man-optimality. In version of GS where men propose, each man receives best valid partner.

w is a valid partner of m if there exist some stable matching where m and w are paired

Q. Does man-optimality come at the expense of the women?

Woman Pessimality

Woman-pessimal assignment. Each woman receives worst valid partner.

Claim. GS finds woman-pessimal stable matching S*.

Pf.

- Suppose A-Z matched in S*, but Z is not worst valid partner for A.
- There exists stable matching S in which A is paired with a man, say Y, whom she likes less than Z.
- Let B be Z's partner in S.
- Z prefers A to B. ← man-optimality
- Thus, A-Z is an unstable in S. •

S

Amy-Yancey Bertha-Zeus

Lessons Learned

Powerful ideas

- Isolate underlying structure of problem.
- Create useful and efficient algorithms.

Potentially deep social ramifications.

Moral: Be the one doing the proposing!