Vertex cover

VERTEX-COVER. Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge, at least one of its endpoints is in S?

Ex. Is there a vertex cover of size ≤ 4?

Ex. Is there a vertex cover of size ≤ 3?

![Graph and vertex cover diagram]

- **Independent set of size 6**
- **Vertex cover of size 4**
3-satisfiability reduces to vertex cover

Theorem. 3-SAT \leq_P VERTEX-COVER.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of VERTEX-COVER that has a vertex cover of size $2k$ iff Φ is satisfiable.

Construction.

- G contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.

\[
\Phi = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(x_1 \lor x_2 \lor x_4 \right)
\]
3-satisfiability reduces to vertex cover

Theorem. 3-Sat \leq_P Vertex-Cover.

Pf. Given an instance Φ of 3-Sat, we construct an instance (G, k) of Vertex-Cover that has a vertex cover of size $2k$ iff Φ is satisfiable.

Construction.
- G contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

$$\Phi = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right)$$
Lemma. G contains vertex cover of size $2k$ iff Φ is satisfiable.

Pf. \Rightarrow Let S be a vertex cover of size $2k$.

- S must contain exactly two nodes in each triangle.
- Set the excluded literal to $true$ (and remaining variables consistently).
- Truth assignment is consistent and all clauses are satisfied.

Pf \Leftarrow Given satisfying assignment, select one true literal from each triangle, and exclude that one. This is a vertex cover of size $2k$.

$$
\begin{aligned}
\Phi &= \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right)
\end{aligned}
$$
Directed hamilton cycle reduces to hamilton cycle

DIR-HAM-CYCLE: Given a digraph $G = (V, E)$, does there exist a simple directed cycle Γ that contains every node in V?
Theorem. 3-SAT \leq_p \text{DIR-HAM-CYCLE}.

Pf. Given an instance \(\Phi \) of 3-SAT, we construct an instance of \text{DIR-HAM-CYCLE} that has a Hamilton cycle iff \(\Phi \) is satisfiable.

Construction. First, create graph that has \(2^n \) Hamilton cycles which correspond in a natural way to \(2^n \) possible truth assignments.
3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses
3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.
- Intuition: traverse path i from left to right \iff set variable $x_i = true$.

\[
\begin{align*}
3k + 3
\end{align*}
\]
3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- For each clause, add a node and 6 edges.

\[
C_1 = x_1 \lor \overline{x_2} \lor x_3 \quad \text{clause node 1}
\]
\[
C_2 = \overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \quad \text{clause node 2}
\]
3-satisfiability reduces to directed hamilton cycle

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. \Rightarrow

- Suppose 3-SAT instance has satisfying assignment x^*.
- Then, define Hamilton cycle in G as follows:
 - if $x^*_i = \text{true}$, traverse row i from left to right
 - if $x^*_i = \text{false}$, traverse row i from right to left
 - for each clause C_j, there will be at least one row i in which we are going in "correct" direction to splice clause node C_j into cycle
 (and we splice in C_j exactly once)
Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. \iff

- Suppose G has a Hamilton cycle Γ.
- If Γ enters clause node C_j, it must depart on mate edge.
 - nodes immediately before and after C_j are connected by an edge $e \in E$
 - removing C_j from cycle, and replacing it with edge e yields Hamilton cycle on $G - \{C_j\}$
- Continuing in this way, we are left with a Hamilton cycle Γ' in $G - \{C_1, C_2, \ldots, C_k\}$.
- Set $x^*_i = true$ iff Γ' traverses row i left to right.
- Since Γ visits each clause node C_j, at least one of the paths is traversed in "correct" direction, and each clause is satisfied. \blacksquare
3-colorability

3-COLOR. Given an undirected graph G, can the nodes be colored red, green, and blue so that no adjacent nodes have the same color?
Application: register allocation

Register allocation. Assign program variables to machine register so that no more than \(k \) registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names; edge between \(u \) and \(v \) if there exists an operation where both \(u \) and \(v \) are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is \(k \)-colorable.

Fact. \(3\text{-COLOR} \leq_p \text{K-REGISTER-ALLOCATION} \) for any constant \(k \geq 3 \).
3-satisfiability reduces to 3-colorability

Theorem. 3-SAT \leq_p 3-COLOR.

Pf. Given 3-SAT instance \(\Phi \), we construct an instance of 3-COLOR that is 3-colorable iff \(\Phi \) is satisfiable.
3-satisfiability reduces to 3-colorability

Construction.

(i) Create a graph G with a node for each literal.
(ii) Connect each literal to its negation.
(iii) Create 3 new nodes T, F, and B; connect them in a triangle.
(iv) Connect each literal to B.
(v) For each clause C_j, add a gadget of 6 nodes and 13 edges.

![Diagram](image-url)

- **true**
- **false**
- **base**

`T` and `F` are connected to the `true` and `false` nodes respectively. The `base` node is connected to all the literals and clauses.

`to be described later`
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- Consider assignment that sets all T literals to true.
- (iv) ensures each literal is T or F.
- (ii) ensures a literal and its negation are opposites.
Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- Consider assignment that sets all T literals to true.
- (iv) ensures each literal is T or F.
- (ii) ensures a literal and its negation are opposites.
- (v) ensures at least one literal in each clause is T.

$$C_j = x_1 \lor \overline{x_2} \lor x_3$$

6-node gadget
Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- Consider assignment that sets all T literals to true.
- (iv) ensures each literal is T or F.
- (ii) ensures a literal and its negation are opposites.
- (v) ensures at least one literal in each clause is T.

3-satisfiability reduces to 3-colorability.
Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \iff Suppose 3-SAT instance Φ is satisfiable.

- Color all true literals T.
- Color node below green node F, and node below that B.
- Color remaining middle row nodes B.
- Color remaining bottom nodes T or F as forced. □

3-satisfiability reduces to 3-colorability

$a literal set to true$ in 3-SAT assignment

$C_j = x_1 \lor \overline{x_2} \lor x_3$