
CSE421: Design and Analysis of Algorithms

Homework 1

Anup Rao Due:

Each problem is worth 10 points:

1. If c is the first company on the applicant a’s preference list and a is the first applicant on
company c’s preference list, does it have to be the case that c and a must be matched to each
other in every stable matching?

Solution. We will show that c and a must be matched to each other in every stable match-
ing. Assume for the sake of contradiction that c and a are not matched in a stable matching.
Then there is a company c′ and an applicant a′ such that company c is paired with applicant
a′, and applicant a is paired with company c′. But c prefers a to a′ and a prefers c to c′, so
this matching is not stable.

2. Prove or disprove: In every stable matching, there must be at least one party who is matched
to his/her top choice. HINT: Play with some 3-couple examples. Note that the problem asks
about every stable matching, rather than the unique matching that is found by the algorithm
discussed in class. Thus if you wish to prove the statement true, you need to prove it for every
stable matching, whereas to show that it is false, you just need to find some stable matching
that disproves it.

Solution. The statement is not true. Here is a counterexample. The preferences are:
X B A C

Y C B A

Z A C B

A Y X Z

B Z Y X

C X Z Y

Consider the matching: X−A, Y −B, Z−C. We will first show that this is a stable matching.
Indeed, X prefers only B to his current partner, but B prefers Y . Y prefers only C to his
current partner, but C prefers Z to Y . Z prefers only A to C, but A prefers X to Z. We are
now done because no one is matched to someone that is first on their preference list.

3. Prove that any graph with n vertices and at least n+ k edges must have at least k+ 1 cycles.

Solution. We prove the statement by induction on k.

The base case is when k = 0. Suppose the graph has c connected components, and the i’th
connected component has ni vertices. Then there must be some i for which the i’th connected
component has at least ni edges, or else the total number of edges in the graph would be less
than n1 + . . . + nc = n. If this i’th connected component had no cycles, then it would be
a tree, but that is not possible, because a tree must have ni − 1 edges. So, this connected
component must contain a cycle.

For the inductive step, let k ≥ 1 and assume the statement holds for graphs with n + k − 1
edges, and let us prove that it holds for a graph with n+ k edges. Suppose G is a graph with

1-1



n + k edges and n vertices. By induction, G must contain at least k cycles. Let e be an edge
that belongs to a cycle C. If we delete e from G, we obtain a graph G′ with n + k − 1 edges.
By induction, G′ must contain at least k cycles. However, these k cycles cannot include C,
because G′ does not contain the edge e of C. If we add back e to G, we must then have k + 1
cycles, because we will obtain the new cycle C that was not present in G′.

4. Assume have functions f, g such that f = O(g), and that f(x), g(x) > 1 for every x. For each
of the following statements, decide whether you think it is true or false and give a proof or
counterexample:

(a) log f(n) = O(log g(n)).

Solution. The statement is true if f and g were also promised to be increasing. In
this case, f(n) = O(g(n)) implies that there exist constants c and N such that ∀n ≥ N ,
f(n) ≤ cg(n).

f(n) ≤ cg(n)

⇒ log f(n) ≤ log g(n) + log c

Then
log g(n) + log c ≤ c′ log g(n)

holds as long as g(n) is an increasing function.

Common Errors. There were attempts to prove the statement to be True by showing
there exists a constant c, n0 such that log g(n) ≥ c for n ≥ n0. This is not true, as
demonstrated by taking g(n) = 1 + 1

n

(b) 2f(n) = O(2g(n)).

Solution. The statement is False.
Take f(n) = logn2 and g(n) = logn. It is clear that f(n) ≤ 2g(n), thus f(n) = O(g(n)).

2f(n) = 2logn
2

= n2

2g(n) = 2logn = n

Clearly n2 6= O(n), which shows that 2f(n) 6= O
(
2g(n)

)
.

(c) f(n) = O(g(n)2).

Solution. The statement is True.
We have f(n) = O(g(n)), which implies there exist constants c and N such that ∀n ≥ N ,
f(n) ≤ cg(n).

f(n) ≤ cg(n)

≤ cg(n)g(n) [since g(n) > 1]

Hence, ∀n ≥ N , we have f(n) ≤ cg(n)2 which is equivalent to saying f(n) = O(g(n)2)

1-2


