
CSE421: Design and Analysis of Algorithms

Homework 3

Anup Rao Due:

Each problem is worth 10 points:

1. Give a polynomial time algorithm that takes an undirected graph with m edges as input and
outputs a coloring of the vertices with 3 colors, so that at least 2m/3 of the edges are properly
colored. An edge is properly colored if its vertices get distinct colors. HINT: Give a greedy
algorithm that colors each vertex one by one.

Solution: The algorithm is described below.

Input: An undirected graph G = (V,E) with m edges
Result: A coloring of G where at least 2m/3 edges are properly colored

1 for v ∈ V do
2 Set count[color1]← 0, count[color2]← 0, count[color3]← 0
3 for v′ neighbor of v do
4 count[color of v′] + +
5 end
6 Set vcolor ← argmin{count[color1], count[color2], count[color3]}
7 end

Runtime: The first loop involves going through every vertex v in the graph, and the second
involves going through every neighbor of v. There are polynomially many vertices and each
vertex has a polynomial number of neighbors, thus the algorithm runs in polynomial time.

Proof of Correctness: Every time we color a vertex v, we determine the fate of some
number of edges (i.e. whether those edges will be properly colored or not at the end): these
edges are exactly the edges (v, v′) where v′ has already been colored. But every time we
color a vertex v, we color it in such a way to minimize the number of edges (v, v′) that are
improperly colored. There are 3 colors, so every time we color a vertex v, at most 1/3 of the
edges whose fate we decide will be improperly colored. Since this is true for every step of the
algorithm (i.e. every time we color a vertex), we will have improperly colored ≤ 1/3 of the
edges by the end of the algorithm.

2. Show an execution of Kruskal’s algorithm to compute the minimum spanning tree of the
following graph. Show the state of the connected components (union find) data structure at
each step:

3-1

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 161

Exercises
5.1. Consider the following graph.

A B C D

E F G H

1 2 2

1

6 5 6

33

5 4 5 7

(a) What is the cost of its minimum spanning tree?
(b) How many minimum spanning trees does it have?
(c) Suppose Kruskal’s algorithm is run on this graph. In what order are the edges added to the
MST? For each edge in this sequence, give a cut that justifies its addition.

5.2. Suppose we want to find the minimum spanning tree of the following graph.

A B C D

E F G H

1 2

41268

5

64

1 1

3

(a) Run Prim’s algorithm; whenever there is a choice of nodes, always use alphabetic ordering
(e.g., start from node A). Draw a table showing the intermediate values of the cost array.

(b) Run Kruskal’s algorithm on the same graph. Show how the disjoint-sets data structure
looks at every intermediate stage (including the structure of the directed trees), assuming
path compression is used.

5.3. Design a linear-time algorithm for the following task.

Input: A connected, undirected graph G.
Question: Is there an edge you can remove from G while still leaving G connected?

Can you reduce the running time of your algorithm to O(|V |)?
5.4. Show that if an undirected graph with n vertices has k connected components, then it has at

least n − k edges.
5.5. Consider an undirected graph G = (V, E) with nonnegative edge weights we ≥ 0. Suppose that

you have computed a minimum spanning tree of G, and that you have also computed shortest
paths to all nodes from a particular node s ∈ V .
Now suppose each edge weight is increased by 1: the new weights are w′

e = we + 1.

(a) Does the minimum spanning tree change? Give an example where it changes or prove it
cannot change.

(b) Do the shortest paths change? Give an example where they change or prove they cannot
change.

Solution: The algorithm will first sort the edges (breaking ties arbitrarily) to give this
order: A-B, F-G, G-H, G-D, B-C, C-G, C-D, A-E, D-H, E-F, B-F, B-G, A-F. Each edges is
added to the tree only if it connects two new connected components. The following diagram
shows the tree edges added and the state of the union-find data-structure after each edge
addition.

A,0 B,0 C,0 D,0 E,0 F,0 G,0 H,0

A,0 B,1 C,0 D,0 E,0 F,0 G,1 H,0

A,0 B,1 C,0 D,0 E,0 F,0 G,1 H,0

A,0 B,1 C,0 D,0 E,0 F,0 G,1 H,0

F-G

G-H

G-D

A,0 B,1 C,0 D,0 E,0 F,0 G,1 H,0B-C

A,0 B,2 C,0 D,0 E,0 F,0 G,1 H,0C-G

A,0 B,2 C,0 D,0 E,0 F,0 G,1 H,0A-E

A,0 B,0 C,0 D,0 E,0 F,0 G,0 H,0

A-B

Tree Edges
Included

3-2

3. Suppose you have a processor that can operate 24 hours a day, every day. People can submit
jobs to the processor by giving a start and finish time during a day. The processor can only
run one job at a time. If a job is accepted, it must run continuously between the start and
finish times. For example, if the start time is 10 pm and the finish time is 3 am, then the job
must run from 10 pm to 3 am every day. Give a polynomial time algorithm that on input
such a list of such jobs outputs a set of compatible jobs of maximal size. Prove that your
algorithm works.

Solution. The algorithm is given below.

Input: set of jobs with start times and finishing times
Result: A 24 hour processor that can handle most jobs

1 Let J1, J2, ... ,Jn be the jobs.
2 Let J be an empty set
3 for i from 1 through n do
4 s = Ji’s start time
5 e = s + 24 hours
6 Sort all jobs by their finishing time with s as the start time, and consider only

jobs whose finish time is within e.
7 Run the greedy algorithm for interval scheduling from class on the sorted jobs,

and call the solution J ′

8 if |J ′| > |J | then
9 J = J ′

10 end

11 end
12 return J

(a) Run time: In each iteration of the For loop, we first sort the jobs and then run the
greedy algorithm from class. Since the time for for each iteration is O(n log n) and the
number of iterations is n, the overall runtime is O(n2 log n).

(b) Proof of correctness: It is important to note that there is no start time that could
be taken as a reference. Even if we take 00 : 00 to be the reference, there are jobs that
overlap 00 : 00 defeating the purpose. Apriori it is not clear what the start time of the
optimal solutions is, but note that the possible start times can only be one of the start
times of the jobs. In class, we proved that the greedy interval scheduling algorithm will
give the optimal solution for a given set of jobs and starting time. So applying it for all
possible start times and picking a solution with largest number of jobs is guaranteed to
find the optimum solution.

3-3

4. In class we discussed an algorithm to color the vertices of an undirected n vertex graph with
2 colors so that every edge gets exactly 2 colors (assuming such a coloring exists). We know
of no such algorithm for finding 3-colorings in polynomial time. Here we’ll figure out how to
color a 3-colorable graph with O(

√
n) colors.

(a) Give a greedy polynomial time algorithm that can properly color the vertices with ∆+1
colors, as long as every vertex of the graph has degree at most ∆.

Solution. Pseudo-Code version:

Input: An undirected graph G = (V,E) with max degree ∆ + 1
Result: Color G using atmost ∆ + 1 colors.

1 for v ∈ V do
2 Let C be {1, 2, . . . ,∆ + 1}
3 for v′ ∈ neighbors of v do
4 Remove the v′color from C
5 end
6 Set vcolor to be an arbitrary color from C

7 end

Runtime: The first loop involves going through every vertex v in the graph, and the
second involves going through every neighbor of v. There are polynomially many vertices
and each vertex has a polynomial number of neighbors, thus the algorithm runs in
polynomial time.

Proof of Correctness: Regardless of how the neighbors of a node are colored, it is
always possible to color a node with one of the ∆ + 1 colors. Each node has at most ∆
neighbors, so there are at most ∆ colors that a node cannot be colored with, yet ∆ + 1
colors are available. Thus we will never run out of color, and thus greedy coloring of the
nodes work.

3-4

(b) Give a polynomial time algorithm that can properly color the graph with O(
√
n) colors,

as long as the input graph is promised to be 3-colorable. HINT: If a vertex v has more
than

√
n neighbors, then argue that the subgraph of the neighbors of v must be bipartite,

and use the algorithm from class to color v and its neighbors with 3 new colors. Continue
this process until every vertex has less than

√
n neighbors, and then use the algorithm

from part (a).

Solution.

Input: An undirected 3-colorable graph G = (V,E).
Result: Color G using at most O(

√
|V |) = O(

√
n) colors.

1 for v ∈ V do
2 if v has at least

√
n uncolored neighbors then

3 Pick 3 new colors, c1, c2, c3;
4 Color v with c1;
5 Color the induced subgraph of v’s uncolored neighbors with c2, c3 by

traversing the subgraph and assign alternating color on the path;
6 end

7 end
8 Let G’ be the induced subgraph of remaining uncolored nodes;
9 Color G’ with algorithm 3(a) using

√
n new colors;

i. Runtime: The first for loop involves inspecting each node, and counting the number
of colored neighbors, which requires inspecting every edge twice and every node once.
Thus, for the first loop overall runs in O(|E|+ |V |) (or O(m+n)) time. Creating the
induced subgraph involves, at most, copying over the original graph, which requires
work proportional to the length of the input, followed by O(m + n) to restrict the
graph to the pertinent edges and vertices. Coloring that takes O(m + n) time,
which follows from the analysis in part (a). Overall, the runtime of this algorithm
ss O(m + n).

ii. Proof of Correctness: In a 3-colorable graph, the neighbors of a single node must
be 2-colorable, because they all share a neighbor of the same color. Hence, every
vertex with more than

√
n (uncolored) neighbors with its neighbours, gets assigned

3 new colors each iteration. The outer loop iterates at most
√
n times, because

each time it does so, it colors at least
√
n uncolored nodes, and there are only n

nodes total. Each iteration uses 3 colors, and thus the first loop uses at most 3
√
n

colors, which is O(
√
n). The second part correctly colors the induced subgraph with

at most
√
n colors, as the first loop reduces the maximum degree in the induced

subgraph to at most
√
n − 1. Therefore, the algorithm uses at most O(

√
n) colors

overall, as desired.

3-5

