
CSE421: Design and Analysis of Algorithms

Homework 4

Anup Rao Due:

An algorithm is said to run in polynomial time if it runs in time O(nd) for some constant d on
inputs of size n. Each problem is worth 10 points:

1. Prove or disprove the following: Given any undirected graph G with weighted edges, and a
minimum spanning tree T for that G, there exists some sorting of the edge weights w(e1) ≤
w(e2) ≤ . . . ≤ w(em) , such that running Kruskal’s algorithm with that sorting produces the
tree T .

Solution: We shall show that there is a sorted order producing the MST T . Choose a sorted
order w(e1) ≤ . . . ≤ w(em) satisfying the property that if ei, ej are such that w(ei) = w(ej)
and ei belongs to the tree but ej does not, then ei comes before ej . In other words, within
the edges of the same weight, put the edges of the tree first.

We shall prove by induction on i that at the i’th step, Kruskals algorithm will include ei if
and only if ei belongs to T .

For the base case of e1, observe that the algorithm must include e1, and e1 must belong to
the tree. This is because if e1 does not belong to T , then neither does any other edge of the
same weight. So, adding e1 to T gives a cycle, and all the other edges of the cycle must have
larger weight than e1. Then if we delete one of the other edges from the cycle we obtain a
new tree of lighter total weight, contradicting the fact that T is an MST.

Now, for i > 1, let K denote the edges picked by the algorithm so far. If ei belongs to the tree
then Kruskal’s algorithm will include ei, since this does not create any cycles in the edges K
(which all belong to T by induction).

If ei does not belong to the tree, then we claim that ei must create a cycle among the edges
of K, and so Kruskal’s algorithm will not include it. This is because ei must create a cycle in
T , so if it does not create a cycle in K, then some edge of the cycle in T does not belong to
K, so this edge must be heavier than ei. Adding ei to T and deleting the heavier edge gives
a cheaper tree, which is not possible since T is an MST.

2. You are given a graph G with n vertices and m edges, and a minimum spanning tree T of
the graph. Suppose one of the edge weights w(e) of the graph is updated.

(a) Give an algorithm that runs in time O(m) to test if T still remains the minimum spanning
tree of the graph. You may assume that all edge weights are distinct both before and
after the update. HINT: If e ∈ T , consider the cut obtained by deleting e from T . If
e /∈ T , consider the cycle formed by adding e to T .

(b) Suppose T is no longer the minimum cost spanning tree. Give an O(m) time algorithm
to update the tree T to the new minimum cost spanning tree.

4-1



Solution. We start by proving two claims:

Claim 1. Suppose the updated edge e = {u, v} is in T . Let A and B denote the connected
components of T obtained after deleting e. If the weight of edge e was decreased, then T
remains an MST. If the weight of e was increased, let e′ be the lightest edge crossing from A
to B. Then the tree T − e + e′ is the unique MST of the new graph.

Proof First observe that if the weight of e was decreased by c, then the cost of every
spanning tree can decrease at most by c, and the cost of T decreases by c, so T must remain
an MST.

If the weight of e was increased, let e′ be the lightest crossing edge from A to B. For every
other edge f of T , we proved in class that f must be the lightest crossing edge of some cut in
the graph before the update, since f would be chosen in an execution of Kruskal’s algorithm.
So, f must retain this property after the update, since e is the only edge whose weight was
changed, and the weight of e was increased. Thus, every such edge f remains in the MST by
the cut property. Moreover, e′ must also be in every MST by the cut property. So, T − e+ e′

is the unique MST of the updated graph.

Claim 2. Suppose the updated edge e = {u, v} is not in T . Then if the weight of e is increased,
T remains an MST. If e is added to T , then e creates a cycle C in T . If the weight of e was
decreased, let e′ denote the heaviest edge of C. Then T + e− e′ is the unique MST of the new
graph.

Proof If the weight of e is increased, then the cost of every MST can only increase, while
the cost of our tree T remains the same, so T remains an MST.

If the weight of e is decreased and e′ is the heaviest edge of the cycle, then e′ certainly cannot
be part of any MST by the cycle property. For all other edges f 6= e that do not belong to
T , we know that f must be the heaviest edge of a cycle in the graph before the update. This
remains true after the update, since the update only decreased the weight of an edge. So,
every such f cannot be part of any MST. Because any MST cannot contain f as above, and
cannot contain e′, the only possible MST in the graph is T + e− e′.

Given the claims above, the algorithm is as follows:

(a) If e ∈ T and the weight of e was decreased, or e /∈ T and the weight of e was increased,
then output that the T remains an MST.

(b) Otherwise, if e ∈ T , use BFS to compute A, and then run over all edges to find the
lightest crossing edge from A to B. If e = e′ output that T remains an MST, otherwise
output the tree T − e + e′.

(c) If e /∈ T , use BFS to compute the cycle C, and let e′ be the heaviest edge of C. If e = e′

output that T remains an MST, otherwise output T + e− e′.

The correctness of the algorithm follows from the claims above. The running time is O(m),
since BFS runs in time O(m).

4-2



3. Suppose you are choosing between the following three algorithms:

• Algorithm A solves the problem by dividing it into five subproblems of half the size,
recursively solves each subproblem, and then combines the solution in linear time.

• Algorithm B solves problems of size n by recursively solving two subproblems of size
n− 1, and then combines the solution in constant time.

• Algorithm C solves the problem by dividing it into nine subproblems of one third the
size, recursively solves each subproblem, and then combines the solutions in quadratic
time.

What are the running times of each of these algorithms?

Solution: Algorithm A has the recurrence

T (n) ≤ 5T (n/2) + O(n).

Since 5 > 21 this is a case where the leaves dominate. The running time is O(nlog2 5).

Algorithm B has the recurrence

T (n) ≤ 2T (n− 1) + O(1).

The i’th level of the tree has total work O(2i), and there are n − 1 levels. So the running
time is

n−1∑
i=0

O(2i) = O(1) · (2n − 1)/(2− 1) = O(2n).

Algorithm C has the recurrence

T (n) ≤ 9T (n/3) + O(n2).

Since 9 = 32, this algorithm has running time O(n2 log n) by the master theorem.

4. You are given two sorted lists of integers of length m and n. Give an O(logm + log n) time
algorithm for computing the k’th smallest integer in the union of the lists.

Solution: We shall carry out a variant of binary search. Let x1, . . . , xm and y1, . . . , yn be
the given lists.

(a) If m = 1

i. If yk−1 ≤ x1 ≤ yk, output x1,

ii. Else If x1 ≤ yk, output yk−1

iii. Else output yk.

(b) If n = 1

i. If xk−1 ≤ y1 ≤ xk, output y1,

ii. Else If y1 ≤ xk, output xk−1

iii. Else output xk.

4-3



(c) If bm/2c+ bn/2c ≥ k then

i. If xbm/2c ≤ ybn/2c, then recursively find the k’th smallest number in x1, . . . , xm and
y1, . . . , ybn/2c.

ii. If xbm/2c > ybn/2c, then recursively find the k’th smallest number in x1, . . . , xbm/2c
and y1, . . . , yn.

(d) If bm/2c+ bn/2c < k then

i. If xbm/2c ≤ ybn/2c, then recursively find the k’th smallest number in xbm/2c+1, . . . , xm
and y1, . . . , yn.

ii. If xbm/2c > ybn/2c, then recursively find the k’th smallest number in x1, . . . , xm and
ybn/2c+1, . . . , yn.

To efficiently implement the recursive calls, we only pass in the end-points of the new input
intervals used, rather than copying the whole input into a new array.

To prove correctness, when n = 1 or m = 1, the algorithm uses the sorted lists to find the
k’th smallest element in constant time. In the other cases, the algorithm always eliminates
half of one list. In case (b), i, we must have that the k’th smallest number is at most ybn/2c,
since there are bm/2c+ bn/2c ≥ k numbers that are at most ybn/2c. Thus, the recursive step
will correctly find the k’th smallest number in the overall list. All the other cases hold for
the same reason: in each case we eliminate one half of one of the lists.

There can be at most O(log n) +O(logm) recursive calls, because in each call one of the lists
is halved.

4-4


