
CSE421: Design and Analysis of Algorithms

Homework 5

Anup Rao Due:

1. Given a sequence of integers x1, . . . , xn (possibly including negative integers) and an interval
of coordinates I = [i, j], write xI to denote the sum

∑
i≤k≤j xk. Give a linear time algorithm

to find the interval that maximizes xI .

Solution. Let OPT (j) denote maxi≤j
∑

i xi. In words, Opt(j) gives the optimal value of
all intervals that end at j. Our algorithm will compute Opt(j) for every choice of j. Then
final solution is then given by maxj Opt(j).

To compute Opt(j) in terms of smaller j, note that there are two cases. If the optimal interval
ending at j includes only xj , then Opt(j) = xj . Otherwise, the optimal interval must include
j − 1, which case we must have Opt(j) = Opt(j − 1) + xj . So we always have

Opt(j) = max{xj , xj + Opt(j − 1)}

Input: A sequence of integers
Result: Value of best interval
Set M to be an array of n elements; Set M [1] = x1;
for integer j in 2 through n do

Set M [j] = max{xj , xj + M [j − 1]};
end
output maxj M [j];

Runtime: The algorithm goes through the sequence twice. So the algorithm has runtime
O(n).

2. Given a sequence of characters c1, . . . , cn, we say that a subsequence is a palindrome if it
reads the same forwards and backwards. For example, “a,b,a,c,a,b,a” is a palindrome. Give
an O(n2) time algorithm to find the longest palindrome subsequence in the input sequence
c1, . . . , cn. For example, in the sequence c, l,m, a, l, f, d, c, a, f,m, the longest palindrome
subsequence is m, a, d, a,m. HINT: For i < j, let p(i, j) denote the length of the longest
palindrome in xi, . . . , xj . Express p(i, j) in terms of p(i + 1, j), p(i, j − 1), p(i + 1, j − 1).
Evaluate the values p(i, j) in order of increasing |i− j|.

Solution. As in the hint, we shall express p(i, j) in terms of the optimal solution for smaller
intervals.

5-1

There are a number of cases. If i = j, then the solution has value 1, since ci is a palindrome
by itself. If i = j − 1 then the optimal solution is 1 if ci 6= cj and 2 if ci = cj . If i < j − 1
and ci = cj , then the optimal solution must match ci to cj , so the optimal solution has value
p(i, j) = p(i+ 1, j−1) + 2. If i < j−1 and ci 6= cj , then the optimal solution does not involve
either ci or cj so it is equal to either p(i + 1, j) or p(i, j − 1).

We can compute the p(i, j) values in increasing value of |j− i|. Putting all this together gives
the algorithm, which computes the longest palindrome as P (i, j) for each interval [i, j], and
the length of the palindrome as p(i, j).

Input: A list c[1, . . . , n] of characters.
Result: The longest palindrome subsequence of c.
for j = 1 to n do

Set p(j, j) = 1, P (j, j) = cj ;
end
for j = 2 to n do

if cj = cj−1 then
Set p(j − 1, j) = 2, P (j, j) = cj−1cj ;

end
else

Set p(j − 1, j) = 1, P (j, j) = cj−1;
end

end
for k = 2 to n do

for i = 1 to n− k do
if ci = ci+k then

Set p(i, i + k) = 2 + p(i + 1, i + k − 1);
Set P (i, i + k) = ciP (i + 1, i + k − 1)ci+k;

end
else

if p(i + 1, i + k) > p(i, i + k − 1) then
Set p(i, i + k) = p(i + 1, i + k);
Set P (i, i + k) = P (i + 1, i + k);

end
else

Set p(i, i + k) = p(i, i + k − 1);
Set P (i, i + k) = P (i, i + k − 1);

end

end

end

end
return P (1, n);

Runtime: The algorithm’s runtime is proportional to the number of subproblems P (i, j),
which is O(n2).

3. You are given a rectangular piece of cloth with dimensions X×Y , where X and Y are positive

5-2

integers, and a list of n products that can be made using the cloth. For each product i you
know that a rectangle of cloth of dimensions ai× bi is needed and that the selling price of the
product is ci Assume the ai, bi and ci are all positive integers. You have a machine that can
cut any rectangular piece of cloth into two pieces either horizontally or vertically. Design an
algorithm that runs in time that is polynomial in X,Y, n and determines the best return on
the X × Y piece of cloth, that is, a strategy for cutting the cloth so that the products made
from the resulting pieces give the maximum sum of selling prices. You are free to make as
many copies of a given product as you wish, or none, if desired.

Solution. The crux of this problem is to identify precisely which actions are available to
the machine:

• Make a vertical cut

• Make a horizontal cut

• Do nothing (and sell the current item)

Input: Dimensions of cloth X,Y, and a list of item values and dimensions.
Result: Best possible value of the cloth
Let cut be an X by Y dimensional array with every entry initialized to 0.
for x ∈ [0, X − 1] do

for y ∈ [0, Y − 1] do
for xcut ∈ [1, x− 1] do

cut[x, y] = max(cut[x, y], cut[xcut, y] + cut[x− xcut, y])
end
for ycut ∈ [1, y − 1] do

cut[x, y] = max(cut[x, y], cut[x, ycut] + cut[x, y − ycut])
end
for item ∈ Items do

if itemdimensions == (x, y) then
cut[x, y] = max(cut[x, y], itemvalue)

end

end

end

end
return cut[X − 1, Y − 1]
// Note: This does not actually retrieve the necessary cuts. The cuts could be retrieved by
storing which actions are taken along the way, and storing those actions along side their
corresponding values in cut.

Run time: The outer two loops lead to O(XY) iterations over the inner most piece, which
does tries every possible vertical cut, horizontal cut, and item. The overall runtime is
O(XY) ·O(X + Y + n) = O(XY (X + Y + n)).

Proof of correctness: We have to prove that OPT (x, y) = cut(x, y). Here, OPT refers to
the optimum solution to the problem and cut refers to the solution returned by the above

5-3

algorithm. It is sufficient to prove

OPT (x, y) ≥ cut(x, y) (1)

OPT (x, y) ≤ cut(x, y) (2)

To prove equation (1), we use the fact that the solution returned by cut(x, y) is a feasible
solution and hence OPT (x, y) can only do better, impying OPT (x, y) ≥ cut(x, y).
We prove equation 2 by induction on the size of xy.
Base Case: (x, y) = (1, 1). It is clear here that OPT (1, 1) could be 0 or the maximum price
given by a product of dimension 1× 1. In both cases, OPT (1, 1) = cut(1, 1).
Induction Hypothesis: OPT (x′, y′) ≤ cut(x′, y′) ∀x′ ≤ x, y′ ≤ y.
To prove: OPT (x + 1, y) ≤ cut(x + 1, y). Let us consider the optimum solution. It is true
that there exist an i such that the piece given by dimensions (x + 1) × y is cut horizontally
or vertically. This says that OPT (x + 1, y) = OPT (i, y) + OPT (x + 1 − i, y)(when cut
horizontally) or OPT (x + 1, y) = OPT (x + 1, i) + OPT (x + 1, y − i)(when cut vertically).
By induction hypothesis OPT (x′, y′) ≤ cut(x′, y′) for all x′ ≤ x and y′ ≤ y. This implies
OPT (x+ 1, y) ≤ cut(x+ 1, y). A similar argument would give OPT (x, y + 1) ≤ cut(x, y + 1).
This completes the proof.

4. Say you have access to a function dict that returns true if its input is a valid English word,
and false otherwise. We are given as input a sentence from which the punctuation has been
stripped (for example: “dynamicprogrammingisfabulous”). Assuming calls to dict take unit
time, give an O(n2) time algorithm to figure out whether an input string of length n can be
split into a sequence of valid words or not.

Solution: Let the input have the characters x1, . . . , xn.

Let M [j] be set to true if the first j characters can be split into valid words, and false
otherwise.

Then we have M [j] is true if and only if there is some i < j such that xi, . . . , xj is a valid
word, and M [i− 1] is true. So, we can compute M [j] iteratively for all j:

So, the algorithm is:

(a) Set M [0] to be false.

(b) For j = 1, 2, . . . , n

i. For i = 1, 2, . . . , j

A. If dict(xi, . . . , xj) returns true and M [i−1] is true, set M [j] to be true. Otherwise
set M [j] to be false.

The algorithm consists of two for loops, each of which can iterate at most n times. So the
running time is O(n2).

5-4

