
NAME:

CSE 421
Introduction to Algorithms
Midterm Exam Spring 2023

Anup Rao May 3, 2023

DIRECTIONS:

• Answer the problems on the exam paper.

• Justify all answers with proofs, unless the facts you
need have been proved in class or in the book.

• If you need extra space use the back of a page

• You have 50 minutes to complete the exam.

• Please do not turn the exam over until you are in-
structed to do so.

• Good Luck!

1



1. (40 points, 5 each) For each of the following problems answer True or False and BRIEFLY
JUSTIFY you answer.

(a) 2n log2 n = O(n2n).

Solution: True. 2n log2 n = (2log2 n)n = nn < n2n.

(b) Suppose we are given a connected undirected graph with m edges, such that all edge
weights are distinct, except for two edges, which have the same weight. Then this graph
can have at most two MSTs.

Solution: True, we have shown in homework and class, that every MST corresponds to
a sorting of the edges according to weights. There are only two possible sorted orders.

(c) If the running time of an algorithm satisfies the recurrence

T (n) = T (0.1n) + T (0.2n) + T (0.7n) + cn,

for some positive constant c, and T (1) = 1, then T (n) = O(n).

Solution: False. Every level of the recursion tree contributes the same, so the running
time of this algorithm is proportional to n log n.

(d) The Fast-Fourier transform algorithm leads to an algorithm for multiplying n×n matrices
in O(n log n log logn) time.

Solution: False. The FFT does not help to multiply matrices.

2



(e) Suppose you are given a collection of sets S1, . . . , Sn such that their union is equal
to {1, 2, . . . , n}, as well as non-negative numbers w1, . . . , wn. Your goal is to find a
subcollection i1, . . . , it such that the union of Si1 , . . . , Sit is {1, 2, . . . , n}, and wi1 + . . .+
wit is minimized. Then the greedy algorithm given in class can be modified to find a
solution that is within a factor of log n from the optimal solution.

Solution: True. The greedy algorithm would pick the set that covers the most elements
per weight. If the optimal solution has weight k, then in each step some set must cover
elements at the rate of 1/k. This leads to a solution of cost at most k log n.

(f) There is a polynomial time algorithm for computing a vertex cover that is within a factor
of 2 of optimal.

Solution: True. We gave a greedy algorithm for this in class.

(g) There is a polynomial time algorithm for the weighted interval scheduling problem.

Solution: True. We saw a dynamic programming algorithm for this problem.

(h) If T (n) = T (n− 1) + O(n), then T (n) is at most O(n2).

Solution: True. The solution is O(1)(1 + 2 + . . . + n) = O(n2).

3



2. (20 points) You are given a rooted complete binary tree on n vertices. Each vertex v is
labelled by an integer value xv. Say that a vertex is a local minimum if its label is less than
the labels of each of its neighbors (neighbors includes the parent and the children). Assuming
that all the labels are distinct, give an O(

√
n) time algorithm to find a local minimum in the

tree.

Solution: The algorithm is as follows:

(a) Let v be the root.

(b) If v is a local minimum, output v.

(c) Otherwise, update v to be a child that has a smaller value, and go to step (b).

Since, the algorithm moves to a child in each step, the running time is at most the depth of
the tree, which is O(log n).

To prove that the algorithm is correct, we need to show that it either finds a local minimum,
or finds a child of lower value in step (c).

In each step, we update v to be a child of lower value, so v always has a value that is less
than that of its parent. So, if v is not a local minimum, it must have a child of lower value.
If v is a leaf, the algorithm will output v, since v is guaranteed to have a parent of higher
value. This proves that the algorithm must terminate with a local minimum.

4



3. (20 points) Given an array of elements A[1, ..., n], give an O(n log n) time algorithm to find a
majority element, namely an element that is stored in more than n/2 locations, if one exists.
Note that the elements of the array are not necessarily integers, so you can only check whether
two elements are equal or not, and not whether one is larger than the other. HINT: Observe
that if x is the majority element, then it must be a majority element in either A[1, ..., n/2] or
A[n/2 + 1, ..., n].

Solution: Algorithm:

(a) Recursively compute the majority element m1 of the first half of the array, and the
majority element of the second half of the array m2.

(b) Scan the whole array to count how many times m1 occurs and how many times m2

occurs. If either occurs more than n/2 times, output that element, otherwise output
that there is no majority element.

As in the hint, if x is a majority element, it must be returned in one of the recursive calls,
so the algorithm will output x. Moreover, whenever the algorithm outputs an element it is
guaranteed to be a majority element because the algorithm checks that this is the case.

The running time satisfies
T (n) = 2T (n/2) + O(n),

which has the solution T (n) = O(n log n).

5


