Some topics adjacent to algorithms

1. Quantum Computing

faster computation.

Classical physics: A bit can be either 0 or 1, or randomly chosen from a distribution on 0,1.

Quantum physics: A bit can be in a superposition state like $a_0 \cdot |0\rangle + a_1 \cdot |1\rangle$,

Idea: Harness the quantum nature of the universe to achieve

Where a_0, a_1 are complex numbers with $|a_0|^2 + |a_1|^2 = 1$.

Quantum physics

A bit can be in a superposition state like $a_0 \cdot |0\rangle + a_1 \cdot |1\rangle$, with a_0, a_1 complex numbers such that $|a_0|^2 + |a_1|^2 = 1$.

The bit can be *measured*. The outcome is: $\Pr[bit = b] = |a_b|^2$.

More generally, a quantum state on *n* bits is $\sum a_x \cdot |x\rangle, \text{ with } \sum |a_x|^2 = 1.$ $x \in \{0,1\}^n$ $x \in \{0,1\}^n$

If we *measure* the first bit, the outcome is $\Pr[x_1 = b]$ is $\sum |a_x|^2$.

$x_1 = b$

Quantum Computing

More generally, a quantum state on *n* bits is $\sum a_x \cdot |x\rangle, \text{ with } \sum |a_x|^2 = 1.$ $x \in \{0,1\}^n$ $x \in \{0,1\}^n$

Each quantum computation step is allowed to apply a "unitary operator" (basically a rotation) to two of the qbits. This induces a rotation of the entire vector in the natural way.

Quantum algorithm: sequence of such simple unitary operators on pairs of qbits + measurement.

Prototypical algorithm: Schor's algorithm for factoring. Factors numbers in polynomial time, something we do not know how to do with classical algorithms.

Common misconceptions

- 1. A quantum computer searches through exponentially many possibilities at once.
- 2. A quantum computer would prove P=NP. 3. A quantum computer would speed up many algorithms. 4. We have built a quantum computer.

2. Cryptography

privacy ...

Prototypical example: RSA encryption

- 1. User picks n = pq, with p, q prime, and uses this data to pick e, d. Public key = (n, e).
- 2. To send message *m* to user, send $m^e \mod n$. To decrypt message message compute $(m^e)^d = m \mod n$. 3.

n = pq.

Idea: Harness the fact that algorithmic tasks are difficult to achieve secrecy,

Claim: Any method that can be used to break this can be used to factor

2. Cryptography

Notes:

- 1. Based on hardness of factoring, discrete log etc 2. Used everywhere by every device.
- 3. Much of it is provably secure only under assumptions: in particular if P = NP, most crypto systems can be hacked in polynomial time.

3. Distributed computing

Idea: n processors are in a distributed environment. Some of them are faulty (will not run algorithm correctly, may even be adversarial). Processors exchange messages.

Prototypical example: Byzantine agreement

- 1. All communication is over private channels.
- 2. One of the processors A wants to send a bit b to all others.
- 3. If A is not faulty, all unfaulty processors should output b.
- 4. Whether or not A is faulty, all unfaulty processors should output same value.

most t, and total number of processors is at least 3t + 1.

Solution: There is a protocol achieving this number of faulty processors is at