
NAME:

CSE 421
Introduction to Algorithms
Sample Final Exam 2023

Anup Rao June 1

DIRECTIONS:

• Answer the problems on the exam paper.

• You are allowed a single cheat sheet.

• Justify all answers with proofs, unless the facts you
need have been proved in class or in the book.

• If you need extra space use the back of a page

• You have 1 hour and 50 minutes to complete the exam.

• Please do not turn the exam over until you are in-
structed to do so.

• Good Luck!

1 /60

2 /20

3 /20

4 /20

5 /25

Total /130

Extra / 10

1



1. (60 points, 5 each) For each of the following problems answer True or False and BRIEFLY
JUSTIFY you answer.

(a) Let (S, T ) be a minimum st-cut in a flow graph (G, s, t). If the capacity of every edge
in G is increased by 2 then the value of the maximum flow in G is increased by 2 times
the number of edges from S to T in G.

Solution: False. There might be another min-cut with fewer edges, and its capacity
will be increased by less.

(b) There is an exponential time algorithm for 3SAT .

Solution: True, NP is contained in EXP.

(c) There is a linear time algorithm for finding the n/10’th largest number in a list of n
numbers.

Solution: True, we saw this in class.

(d) If T (n) = 3T (n/2) + n for n ≥ 2 then T (n) is Θ(nlog3 2).

Solution: False, the master theorem says O(nlog2 3).

(e) If T (n) = 12T (n/4) + n2 for n ≥ 4 then T (n) is Θ(n2).

Solution: True, by master theorem.

2



(f) If 3SAT has a linear time algorithm, then so does every problem in NP .

Solution: False, the reductions can be polynomial time, so we only get that NP is
contained in P.

(g) Every decision problem has an exponential time algorithm.

Solution: False, not the halting problem.

(h) The average degree of a vertex in a tree with n vertices is exactly 2.

Solution: False, it is 2(n− 1)/n = 2− 1/n.

(i) If e is an edge whose weight is lower than the weight of all other edges in an undirected
graph, then every minimum spanning tree must contain e.

Solution: True, by the cut property.

(j) In a flow network, the value of any valid flow is at most the capacity of any s− t cut.

Solution: True, we proved this.

(k) There is a polynomial time algorithm for Vertex Cover that finds the optimal vertex
cover up to a factor of 2.

Solution: True, we gave a greedy algorithm.

3



(l) If the optimal solution to a linear program is 10, then the corresponding dual linear
program must have a solution of finite value.

Solution: True, and that value must be 10 by strong duality.

4



2. (20 points) Assigning teachers to courses

The Teacher Assignment problem is: given a set of teachers T = {t1, . . . , tn} and a set of
courses C = {c1, . . . , cm} determine an assignment of teachers to courses. The input to the
problem has a bipartite graph G = (T,C,E) where an edge (t, c) indicates that teacher t can
teach class c. For each teacher ti there is an integer ui giving the number of courses that ti
must teach, and for each course cj there is an integer dj indicating how many teachers must
be assigned to the course. A teacher t can be assigned at most once to course c (in other
words, if multiple teachers are required for a course, they must be distinct).

Describe how network flow can be used to find an assignment of teachers to courses. If no
assignment is possible that meets these constraints, the algorithm should report failure. Be
sure to argue the correctness of your solution.

Solution:

Make a flow netweork with vertices s, t1, . . . , tn, c1, . . . , cm, t. There are three types of edges:
edges of the type (s, ti) with capacity ti, edges of the type (ti, cj) with capacity 1, and edges
of the (cj , t) with capacity dj .

Find the maximum flow in this network using the capacity scaling algorithm. By the inte-
grality theorem, the max flow will have a solution where all flows are integers.

If the flow fills all the edges from s and into t to capacity, then the problem can be solved.
Morever, the edges (ti, cj) carrying flow 1 in the final solution corresponds to the teacher
assignments.

To prove the correctness, note that every possible solution to the teacher assignment corre-
sponds to a flow that fills all the edges from s and into t, and such a flow must be equal to a
maximum flow because its value is equal to the capacity of the cut that separates s from the
rest of the flow network.

(You can also use space on the next page for your answer)

5



6



3. (20 points) Let G = (V,E) be an undirected graph. Suppose that each edge e has a cost c(e),
with c(e) ∈ {1, 2, 3}. Describe an O(n+m) time algorithm to compute a minimum spanning
tree for G. HINT: Observe that if all the edge costs were exactly the same, then any spanning
tree would be a minimum spanning tree of the graph.

Solution:

(a) Let G1 denote the graph using only the edges of weight 1. Use the BFS algorithm to
find a spanning tree for each connected component of G1. Let T be the set of edges
found in this process.

(b) Next, let G2 be the graph whose vertices are the connected components of T . There is
an edge {u, v} in G2 if and only if G has an edge of weight 2 from connected component
u to connected component v in T . Find a spanning tree for each connected component
of G2. Add the set of weight 2 edges used in this step to T .

(c) Finally, let G3 be the graph whose vertices are the connected components of T . There is
an edge {u, v} in G3 if and only if there is an edge of weight 3 from connected component
u to connected component v in G. Find a spanning tree for each connected component
of G3. Add the set of weight 3 edges used in this step to T .

The algorithm runs in time O(m+n). Each computation of spanning trees for the connected
components can be done using BFS as shown in class. G1, G2, G3 can also be computed in
time O(m + n) by scanning all the edges of G and checking whether or not they go between
different connected components.

To argue that the algorithm is correct, consider sorting the edges of the graph in increasing
order of weights, such that if two edges have the same weight, and exactly one of them belongs
to T , then the one that does not belong to T comes later in the sorted order.

We claim that Kruskal’s algorithm will output T when give the edges in this sorted order.
This is because the edges of T never create a cycle, and the edges that do not belong to
T must always go within a connected component found in the above algorithm, and so will
always create a cycle.

7



4. (20 points) Consider the linear program:

maximize x1 − 2x3

subject to

x1 − x2 ≤ 1

2x2 − x3 ≤ 1

x1, x2, x3 ≥ 0

Prove that (x1, x2, x3) = (3/2, 1/2, 0) is an optimal solution.

Solution: The given solution has value 3/2.

The dual of the program is:

minimize y1 + y2

subject to

y1 ≥ 1

−y1 + 2y2 ≥ 0

−y2 ≥ −2

y1, y2 ≥ 0

Now we see that setting y1 = 1, y2 = 1/2 gives a solution to the dual of value 3/2. By weak
duality, both of these solutions must be optimal.

8



5. (25 points) The following problem can be useful for data compression. The input is a string
y of length n and a list of k strings x1, . . . , xk of lengths m1, . . . ,mk respectively, where each
xi is represented as an array xi[1] · · ·xi[mi] and y is y[1] · · · y[n]. The problem is to determine
the smallest number of copies of strings from x1, . . . , xk that can be concatenated together
to produce y. For example, if x1 = a, x2 = ba, x3 = abab, and x4 = b and y = bababbaababa
then we can write y = x4x3x2x3x1 which is optimal, so the answer is 5.

(a) (10 points) For i ≥ 0, let Opt(i) be the optimal number of strings required to produce the
string y[1] · · · y[i]. Describe a recursive algorithm for computing Opt(n). Don’t forget
the base case.

Solution: We can express Opt(i) in terms of Opt(j), with j < i, as follows.

If in the optimal solution the final part of y is generated using xr, then we must have
y = . . . xr, so Opt(i) = 1 + Opt(i−mr). Thus, we get

Opt(i) = min
r:xr is a suffix of y

1 + Opt(i−mr)

For the base case, we have Opt(0) = 0.

(b) (10 points) Describe how you can compute Opt(n) efficiently using an iterative dynamic
programming algorithm.

Solution:

i. Set M(0) = 0.

ii. For i = 1 to n, compute M(i) using the above formula.

M(i) = min
r:xr is a suffix of y

1 + M(i−mr)

(c) (5 points) What is the running time of your algorithm in terms of n, k and m = maximi?

Solution:

The running time is at most n
∑

r mr ≤ O(nkm), since for each i we need to check to
find which of the strings are valid suffixes.

(You can also use space on the next page for your answer)

9



10



6. (10 points Extra Credit) Give an O(n3) time algorithm for finding a 4-cycle in an undirected
graph, if one exists. HINT: If a graph has a 4-cycle abcd, then there must be two distinct
paths of length two between a and c. For every vertex b, keep track of the paths of length 2
that are generated with b in the middle.

Solution:

(a) Maintain a two dimensional array A(i, j) where initially all of the entries are set to 0.

(b) For every vertex of the graph b, for every pair of neighbors a, c of b, if A(a, c) = 0, set
A(a, c) = b otherwise, we have found a cycle a,A(a, c), c, b.

The running time of the algorithm is O(n3).

11


