Radousied Complenity Classes
Lemara (Markov) If x is non-negative radom variatle the $\operatorname{Pr}[x>\ell \mathbb{E}[x]]<1 / \ell$.
Thi: Let x_{1}, \ldots, x_{n} ke inderadect bits with $\mathbb{E}\left[x_{i}\right] \leq p \rightarrow P\left(x_{i}=1\right] \leq P$ Then $\operatorname{Pr}\left[\sum_{i=1}^{n} x_{i} \geqslant \rho_{n}(1+\varepsilon)\right] \leq 2^{-\frac{\varepsilon^{2} n p}{4} \text {. }}$

$$
\mathbb{E}\left[\sum_{i=1}^{n} x_{i}\right] \leq p_{n}
$$

Fact: Suppose you tosss a coin whid gies leath w.p P. Let $T=\#$ toses to see first head,

$$
\begin{aligned}
& \mathbb{E}[T]=p-1+(1-p)(\mathbb{E}[T)+1) \\
& \Rightarrow \mathbb{E}[T]=1 / p .
\end{aligned}
$$

$$
x-4
$$

Radomized T.M

- End of ead line of code radonly co BPP jump to oul of two lines of colle.

BPP: Bounded-error prob. poty. time $f:\left\{0,1^{*} \rightarrow\right.$ OO,13 EBPP if \exists poly tine rachine $M(x, r)$ of machine

$$
\forall x \quad \operatorname{Pr}_{r}[M(x, r)=f(x)] \geqslant 2 / 3 . \rightarrow \begin{aligned}
& \text { this number } \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { as nos long ar mor }
\end{aligned}>1 / 2 .
$$

RP: Randomized poly tine $f \in R P$ if \exists pry tine $M(x, r)$

$$
\geqslant 2^{-n}
$$

$\forall k$

$$
\begin{aligned}
& f(x)=0 \Rightarrow \operatorname{Pr}[m(x, r)=0]=19 \\
& \cdot f(x)=1 \Rightarrow \operatorname{Pr}[m(x, r)=1] \geqslant 2 / 3 .
\end{aligned}
$$

this number does not matter as lory as >0

$$
R P \subseteq N P
$$

$$
{ }_{c o} R P \stackrel{?}{=} R P
$$

ZPP: Zero error prob. polytime
$f \in Z P P$ if \exists nachise $M(r, r)$

$$
\operatorname{Pr}[M(x, r)=f(x)]=1
$$

$\operatorname{EE}[$ running tine of $M(x, r)] \leq \operatorname{pog}(r)$.
Than: Suppose \exists an prob tine mashie in computing f s.t $\operatorname{Pr}[M(x, r)=f(x)] \geqslant \frac{1}{2}+n^{-c}$. The for every constant d^{r}, there is a prob. poly time M^{\prime} computing f

$$
\begin{aligned}
& \text { there is a prob. poly } \\
& \operatorname{Pr}\left[m^{\prime}(x, r)=f(x)\right] \geqslant 1-2^{-r^{d}} \text {. }
\end{aligned}
$$

Pf: $\frac{M:}{:}$ For sone k rum $M(x, r) \quad n^{h}$ times.
Out put the majority outcome.

$$
\begin{aligned}
& X_{1}, \ldots, X_{k k} \quad X_{i}= \begin{cases}1 & \text { if } i^{\text {th }} \text { rum is } \\
0 & \text { an error }\end{cases} \\
& \operatorname{Pr}\left[m^{\prime}(n, r) \neq f(n)\right] \\
& \frac{1}{1-2 n^{-c}} \\
& =\operatorname{Pr}\left[\sum_{i} x_{i} \geqslant \frac{n^{k}}{2}\right] \\
& \frac{1}{1-\varepsilon}>1+\varepsilon \\
& =\operatorname{Pr}\left[\sum_{i} x_{i} \geqslant n^{k}\left(1 / 2-n^{-c}\right) \cdot \frac{y_{2}}{\left(y_{2}-n^{-c}\right)}\right] \\
& \leqslant \operatorname{Pr}\left[\sum_{i} X_{i} \geqslant n^{k}\left(\frac{1}{2}-n^{-c}\right)\left(1+2 n^{-c}\right)\right] \\
& \leq 2^{-\left(2 n^{-c}\right)^{2} n^{k}\left(\frac{1}{2}-n^{-c}\right)} \frac{4}{4} \\
& \leq 2^{-n^{d}} \quad(\text { choose le large enough). }
\end{aligned}
$$

The: BPP \subseteq Exp

$$
R P \subseteq N P \subseteq E X P
$$

Thm: $Z P P=R P \cap$ coRP
Pf: Suppose $f \in Z P P_{\text {via }} M(x, r) \quad \mathbb{E}\left[r_{\text {uming }}\right.$ time $] \leq t(n)$
Clain: $f \in R P$. $f \in$ co RP
Rur alyorithm $n(x, r)$ for $10 . t(n)$ steps. If aly. lalts: outaut what it oupats If aly doan not: output O . halt i

Suppose $f \in R P \cap$ coRP \rightarrow via $m_{2}(x, r)$
Claim: $f \in Z P P$ via $m_{1}(x, r)$
m^{\prime}

1. Similate $m_{1}(x, r)$ if output 1 , outant 1 .
2." $m_{2}(x, r) " " 0$, output 0 .
2. Goto step I.

$$
\mathbb{E}[\# \text { rouds }] \leq 3 / 2 \text {. }
$$

Open: BPP $\stackrel{?}{=} p$
Thm: If $\exists f \in \operatorname{Exp}$ s.t $\exists \varepsilon>0 f$ carmost be computed by circuits of size $2^{a n}$ then $B P P=P$.

Thm: Every $f \underset{\downarrow}{\in B P P}$ has poly sized ciraits.
Pf:
Make $m^{\prime}(x, r)$

$$
\operatorname{Pr}\left[m^{\prime}(x, r) \neq f(x)\right] \leq 2^{-2 n}
$$

For any inpot length $n, x \in\{0,1\}^{n} 2^{n}$ poterctial imputs.

$$
\begin{aligned}
& \operatorname{Pr}\left[\exists x \text { s.t } m^{\prime}(x, r) \neq f(x)\right] \leq 2^{-2 n} \cdot 2^{n} \\
& <1 \\
\Rightarrow & \exists r \text { st } \underbrace{M^{\prime}(x, r)}=f(x) \quad \forall x \in\{0,1\}^{n} .
\end{aligned}
$$

convert to a cirmit.
Thm: BPP $\in N P^{3 S A T}$

