Schwarte-Eippel
If $f\left(x_{1}, \ldots, x_{n}\right)$, has dey d, S

$$
\operatorname{Pr}_{a_{1} r, a_{n} \in s}\left[f\left(a_{1}, \ldots, a_{n}\right)=0\right] \leq \frac{d}{|s|} .
$$

$$
x \longrightarrow x
$$

Boolem Cirait

Arithnetic Cirmit

Idactity testing
Girm an arithetic cirmit of sige computing $f\left(x_{1}, \ldots, x_{n}\right)$. Is $f \equiv 0$?

Agorith: $S=\left\{1,2, \ldots, 2^{2 s}\right\}$
. lick $a_{1}, \ldots, a_{n} \in S$ uniformly, prime $p \in\left\{1,2, \ldots, 2^{S^{2}}\right\}$

- Evaluate $f\left(a_{1}, \ldots, a_{n}\right)$. $\bmod p$.
. If $f\left(a_{1}, \ldots, a_{n}\right)=0$ conclude $f \equiv 0$.
Chaim: If $f \pm 0$,

$$
\begin{aligned}
& \text { im: If } \left.f \notin 0,1 f\left(a_{1}, \ldots, a_{n}\right)=0\right] \leq \frac{\operatorname{deg}(f)}{|s|} \leq \frac{2^{s}}{2^{2 s}}=2^{-s} \\
& \cdot \operatorname{Pr}\left[f\left(a_{1}, \ldots, a_{n}\right)=0 \bmod p\right] \leq \text { small. }
\end{aligned}
$$

Fact: let $t(v)$ he the $\#$ of primes in

$$
\{1, \ldots, N\} . \quad \lim _{N \rightarrow \infty} \frac{t(N)}{N / \ln (N)}=1 .
$$

\# of primes in $\left\{1,2, \ldots, 2^{s^{2}}\right\}$

$$
\text { is } \sim \quad \frac{2^{s^{2}}}{\ln \left(2^{s^{2}}\right)} \geqslant \frac{2^{s^{2}}}{10 s^{2}}
$$

Proof of Corrections

- If t distinct primes divide

$$
\begin{aligned}
& f\left(a_{1}, \ldots, a_{n}\right) \\
& \Rightarrow \quad f\left(a_{1}, \ldots, a_{n}\right) \geqslant 2^{t} \\
& \Rightarrow \quad 2^{(2 s)^{5}} \geqslant 2^{t} \\
& \Rightarrow(2 s)^{s} \geqslant \frac{1}{t}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left(f\left(a_{1}, \ldots, a_{n}\right)=0 \bmod \rho\right. \\
& \left.1 f\left(a_{1}, . ., a_{n}\right) \neq 0\right] \\
& c \frac{(2 s)^{s}}{2^{s^{2}} / 10 s^{2}} \leqslant 2^{0(s \log))-s^{2}} \\
& X \longrightarrow X \\
& \begin{array}{ll}
V \\
M \\
M
\end{array} \rightarrow \quad 1-(1-g)(1-h) \\
& \underset{g h}{n} \rightarrow \quad \rightarrow \quad h \\
& \int_{d}^{x} 1 \\
& x_{1}^{2}-x_{1}
\end{aligned}
$$

M: $n \times n$ matrix

$$
\begin{aligned}
& \operatorname{det}(M)=\sum_{\pi} \operatorname{sign}(\pi) \prod_{i=1}^{n} M_{i, \pi(i)} \cdot J \text {-con compute } \\
& \operatorname{perm}(M)=\sum_{\pi} \prod_{i=1}^{n} M_{i, \pi(i)} \quad \text { J no iden how } \\
& \text { to compute } \\
& \text { in less haor } 2^{n} \\
& \text { time. }
\end{aligned}
$$

Suppese M is adjaceng matrix
of a graph
$\operatorname{perm}(M)=\#$ cycle covers.

(1234)
\#1
$f:\{0,1\}^{*} \rightarrow \mathbb{Z}$ iff there is a plytine machine V and a poly p s.t $f(x)=\left|\left\{\omega \in\{0, \mid\}^{|p(n)|}: V(x, \omega)=1\right\}\right|$
\# $3 \operatorname{SaT}(\phi)=\#$ satisty assignmett to ϕ.
Tha: Every $f \in \# P$ can le reduced to \#3sat in poly time.
Thm: Every $f \in \# P$ can le reduced to perm in poly tine.

$$
\begin{aligned}
& \text { Hact }(\alpha, \pi) \\
& H(x)=\text { Hatt }(y) \text { where } y \text { is bing eauding of }|x| \text {. } \\
& H(n) \text { has phy sixd cirmits } \\
& H(x) \notin \text { Exp. }
\end{aligned}
$$

