$f:\{0,1\}^{n}-1=\{0,1\}$
\#functions \gg \# circuits of size $2^{n} / 3 n$

Def: $\phi: D \rightarrow R$ is surjative if $\forall y \in R, \exists x \in D$ s.t $\phi(x)=y$.
Def: S is countable if $] \phi: \mathbb{N} \rightarrow S$ with ϕ surjective.

$$
\begin{aligned}
& \phi(1), \phi(2), \phi(3), \ldots \quad S \text { is coutstle if every } g \in S \\
& \text { occurs in this list. }
\end{aligned}
$$ occurs in this list.

$$
2^{\mathbb{N}}=\{A: A \subseteq \mathbb{N}\}
$$

Thar: $2^{\mathbb{N}}$ is not countable.

	1	2	3	4	5	\ldots
A_{1}	0	1	0	0	1	
A_{2}	1	1	1	1	1	
A_{3}	0	0	0	1	0	
\vdots				1		
T	1	0	1	0		

Diagonalization

$$
\begin{aligned}
& T=\left\{i: \quad i \notin A_{i}\right\} \\
& T \notin A_{j} \text { since } \\
& \text { if } j \in A_{j}, j \notin T \\
& \text { if } j \notin A_{j}, j \in T .
\end{aligned}
$$

Thu: The set of fanion $f:\{0,1\}^{*} \rightarrow\{0,1\}$ is not coutoble.

| | x_{1} | x_{2} | x_{3} | | c |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad c$ all olenats of $\{0,1\}^{*}$

The \&. There is a function that cannot be computed by a Turing machine.

Corresponding
Pf: Given program α, write M_{α} to dense the machine

$$
f(\alpha)= \begin{cases}1 & \text { if } \quad M_{\alpha}(\alpha)=0 \\ 0 & \text { otherwise }\end{cases}
$$

Suppose f is computed ty M_{γ}.
Then $M_{\gamma}(\gamma) \neq f(\gamma)$ by the choice of f.

$$
H_{A L T}(\alpha, x)= \begin{cases}1 & \text { if } M_{\alpha}(x) \text { halts } \\ 0 & \text { otherwise. }\end{cases}
$$

Thu: HALT corot be computed by a Turiz mashie.
Pf: Suppose tact can le computed.
$M(\alpha)$

1. Rum $\operatorname{Hat} T(\alpha, \alpha)$.
2. If $H_{A L T}\left(\alpha_{1}(1)=1\right.$, ram $M_{2}(\alpha)$, if $m_{\alpha}(L)=0$, output 1 . Else output 0 .
$M(\alpha)=f(\alpha) \Rightarrow H_{A I T}$ is not computable.

Than There is a Toning madiel M, s.t given code α ad int x if $M_{\alpha}(x)$ halts in T steps, then $M(\alpha, x)$ halts in $O(C T \log T)$ steps with output $M_{\alpha}(x)$.
Here C depends only on α.
x
Gödel's Incompleteness Theorem
"There is a truth that cannot be proved."

11111111111111111111
$K(x)=$ length of shortest program
01010101010101010101 that outputs x.
01011101000001111001

$$
S_{x, N}: \quad k(x)>N
$$

Fact: $\forall N$, there is ax x s.t $S_{x, N}$ is true.
P\&:. \forall chios for x is infinite.

Proof system
malines M sit $M\left(\tau, \frac{c^{\prime}}{\pi}\right)=1$ only if τ is true.
Thu: $\exists x, N$ st

- $S_{x, N}$ is true
* $\forall \pi \quad m\left(s_{x, N}, \pi\right) \neq 1$.

Pt: M_{N}

- Enumerate all pairs (x, π)

If S_{n}, N has a proof weser its tree, M_{N} will output x sit $S_{x, N}$ holds. Contradiction.

