Lecture 13: Randomized Algorithms

Anup Rao

May 6, 2021

In this lecture, we start to talk about randomized algorithms.

Probability Spaces

A probability space is a set Ω such that every element $a \in \Omega$ is assigned a number $0 \leq \operatorname{Pr}[a] \leq 1$ (called the probability of a), and $\sum_{a \in \Omega} \operatorname{Pr}[a]=1$.

An event in this space is a subset $E \subseteq \Omega$. The probability of the event is $\sum_{a \in E} \operatorname{Pr}[a]$. For example, imagine we toss a fair coin n times. Then the probability space consists of the 2^{n} possible outcomes of the coin tosses. If E is the event that the first k coin tosses are heads, this event has probability exactly 2^{-k}. Given two events E, E^{\prime}, we write $\operatorname{Pr}\left[E \mid E^{\prime}\right]$ to denote $\operatorname{Pr}\left[E \cap E^{\prime}\right] / \operatorname{Pr}\left[E^{\prime}\right]$. This is the probability that E happens given that E^{\prime} happens. We say that E, E^{\prime} are independent if $\operatorname{Pr}\left[E \cap E^{\prime}\right]=\operatorname{Pr}[E] \cdot \operatorname{Pr}\left[E^{\prime}\right]$. In other words, E, E^{\prime} are independent if $\operatorname{Pr}\left[E \mid E^{\prime}\right]=\operatorname{Pr}[E]$.

A real valued random variable is a function $X: \Omega \rightarrow \mathbb{R}$. The number of heads in the coin tosses is a random variable. The expected value of a random variable X is defined as $\mathbb{E}[X]=\sum_{a \in \Omega} \operatorname{Pr}[a] \cdot X(a)$. The following lemma is a very useful fact about random variables.
Lemma 1 (Linearity of expectation). If X, Y are real random variables, then $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$.

Proof

$$
\begin{aligned}
\mathbb{E}[X+Y] & =\sum_{a \in \Omega} \operatorname{Pr}[a] \cdot(X(a)+Y(a)) \\
& =\sum_{a \in \Omega} \operatorname{Pr}[a] \cdot Y(a)+\sum_{a \in \Omega} \operatorname{Pr}[a] \cdot X(a) \\
& =\mathbb{E}[X]+\mathbb{E}[Y] .
\end{aligned}
$$

For example, let us calculate the expected number of runs of seeing 7 contiguous heads or tails in a 200 coin tosses. Let X_{i} be 1 if there are 7 heads or tails that start at the i^{\prime} th position, and 0 otherwise. If $1 \leq i \leq 194$, then $\mathbb{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=2 \cdot 2^{-7}=1 / 64$. If $i \geq 196$, then $X_{i}=0$. On the other hand, the total number of such runs is $\sum_{i=1}^{194} X_{i}$. So by linearity of expectation, the expected number of such runs is $194 / 64 \approx 3.031$.

Here is an expectation basic magic trick: Tell your audience to generate two sequences of coin tosses-one generated using 200 flips of a coin, and the second generated by hand. You leave the room, and they write both sequences on a black board. Then you come back into the room and immediately point out the sequence that was generated by hand. The trick: a random sequence is very likely to have a run of 7 heads or tails, while people tend to not insert such a long run into a sequence that they think looks random.

In class, we discussed the waiting time to see the first heads. Suppose you keep tossing a fair coin until you see heads. Let T be the number of tosses you make. What is the expected value of T ? The key observation is that if the first toss is a heads, you stop with $T=1$. Otherwise, the rest of the experiment is exactly the same as the original random experiment. So, we get:

$$
\begin{aligned}
& \mathbb{E}[T]=(1 / 2) \cdot 1+(1 / 2) \cdot(1+\mathbb{E}[T]) \\
\Rightarrow & \mathbb{E}[T] \cdot(1-1 / 2)=1 \\
\Rightarrow & \mathbb{E}[T]=2 .
\end{aligned}
$$

Randomized Algorithms

We shall give a few examples of problems where randomness helps to give very effective solutions.

Matrix Product Checking

Suppose we are given three $n \times n$ matrices A, B, C, and want to check whether $A \cdot B=C$. One way to do this is to just multiply the matrices, which will take much more than n^{2} time. Here we give a randomized algorithm that takes only $O\left(n^{2}\right)$ time.

```
Input: \(3 n \times n\)-matrices \(A, B, C\)
Result: Whether or not \(A \cdot B=C\).
Sample an \(n\) coordiante column vector \(r \in\{0,1\}^{0,1}\) uniformly at
    random ;
if \(A(B(r))=C(r)\) then
    Output "Equal";
else
    Output "Not equal";
end
```

Algorithm 1: Algorithm for Multiplication Checking

The algorithm only takes $O\left(n^{2}\right)$ time. For the analysis, observe that if $A B=C$, then the algorithm outputs "Equal" with probability 1. If $A B \neq C$, the algorithm outputs "Equal" only when $A B r=C r \Rightarrow$ $(A B-C) r=0$. We shall show that this happens with probability at most $1 / 2$.

Let $D=A B-C$. Then $D \neq 0$, so let $d_{i j}$ be a non-zero entry of D. Then we have that the i^{\prime} th coordinate $(D r)_{i}=\sum_{k} d_{i k} \cdot r_{k}$. This
coordinate is 0 exactly when $r_{j}=\left(1 / d_{i j}\right) \sum_{k \neq j} d_{i k} r_{k}$. Finally, observe

$$
\begin{aligned}
& \operatorname{Pr}\left[r_{j}=\left(1 / d_{i j}\right) \sum_{k \neq j} d_{i k} r_{k}\right] \\
& =\sum_{a} \operatorname{Pr}\left[a=\left(1 / d_{i j}\right) \sum_{k \neq j} d_{i k} r_{k}\right] \cdot \operatorname{Pr}\left[r_{j}=a \mid a=\left(1 / d_{i j}\right) \sum_{k \neq j} d_{i k} r_{k}\right] \\
& \leq 1 / 2 \sum_{a} \operatorname{Pr}\left[a=\left(1 / d_{i j}\right) \sum_{k \neq j} d_{i k} r_{k}\right] \\
& =1 / 2
\end{aligned}
$$

Exercise: Modify the above algorithm so that the probability the algorithm outputs "Equal" when $A B \neq C$ is at most $1 / 4$.

2-SAT
A two SAT formula is a CNF formula where each clause has exactly 2 -variables. Here we give a randomized algorithm that can find a satisfying assignment to such a formula, if one exists.

```
Input: A two sat formula \(\phi\)
Result: A satisfying assignment for \(\phi\) if one exists
Set \(a=0\) to be the \(n\)-bit all 0 string;
for \(i=1,2, \ldots, 100 n^{2}\) do
    if \(\phi(a)=1\) then
        Output \(a\);
    end
    Let \(a_{i}, a_{j}\) be the variables of an arbitrary unsatisfied clause.
        Pick one of them at random and flip its value ;
end
Output "Formula is not satisfiable";
```

Algorithm 2: Algorithm for 2 SAT
If ϕ is not satisfiable, then clearly the algorithm has a correct output. Now suppose ϕ is satisfiable and b is a satisfying assignment, so $\phi(b)=1$. We claim that the algorithm will find b (or some other satisfying assignment) within $100 n^{2}$ steps with high probability. To understand the algorithm, let us keep track of the number of coordinates that a, b disagree in during the run of the algorithm. Observe that during each run of the for loop, the algorithm picks a clause that is unsatisfied under a. Since b satisfies this clause, a, b must disagree in one of the two variables of this clause. Thus the algorithm reduces the distance from a to b with probability $1 / 2$.

Thus we can think of the algorithm as doing a random walk on the
line. There are $n+1$ points on the line, and at each step, if the algorithm is at position i it moves to position $i+1$ with probability $1 / 2$ and to position $i-1$ with probability at least $1 / 2$. We are interested in the expected time before the algorithm hits position 0 . Let

$$
t_{i}=\mathbb{E}[\# \text { steps before hitting position } 0 \text { from position } i]
$$

Then we have the following equations:

$$
\begin{aligned}
t_{0} & =0 \\
t_{i} & =(1 / 2) t_{i+1}+(1 / 2) t_{i-1}+1 \quad i \neq 0, n \\
\Rightarrow t_{i}-t_{i-1} & =t_{i+1}-t_{i}+2 \\
t_{n} & =1+t_{n-1}
\end{aligned}
$$

Thus we can compute:

$$
\begin{aligned}
t_{n} & =\left(t_{n}-t_{n-1}\right)+\left(t_{n-1}-t_{n-2}\right)+\ldots+\left(t_{1}-t_{0}\right) \\
& =1+3+\ldots \\
& =\sum_{j=1}^{n}(2 j-1)=2\left(\sum_{j=1}^{n} j\right)-n=n(n+1)-n=n^{2} .
\end{aligned}
$$

Thus the expected time for the algorithm to find a satisfying assignment is n^{2}.

Lemma 2.

$\operatorname{Pr}\left[\right.$ algorithm does not find satisfying assignment in $100 n^{2}$ steps $]<1 / 100$.
Proof We have that

$$
\begin{aligned}
n^{2} & \geq \mathbb{E}[\# \text { steps to find assignment }] \\
& =\sum_{s=0}^{\infty} s \cdot \operatorname{Pr}[s \text { steps to find assignment }] \\
& \geq \operatorname{Pr}\left[\text { at least } 100 n^{2} \text { steps are taken }\right] \cdot 100 n^{2} .
\end{aligned}
$$

Therefore,
$\operatorname{Pr}\left[\right.$ more than $100 n^{2}$ steps are taken $]<1 / 100$.

Examples not discussed in class

Max Cut

Given a graph $G=(V, E)$, a subset $S \subset V$ is called a cut of the graph. The size of the cut is the number of edges that cross from S to $V-S$.

It is known to be NP-hard to compute the MAX-cut of a graph. Here we give a simple randomized algorithm that will compute a cut that is half as big as the biggest cut in expectation.

The algorithm is just to pick the subset S at random, by including every vertex in S with probability half. For each edge e, let X_{e} be the random variable that is 1 if e goes from S to $V-S$, and 0 otherwise. Then we see that the size of the cut is exactly $\sum_{e \in E} X_{e}$. We can compute $\mathbb{E}\left[X_{e}\right]=1 / 2$, and so by linearity of expectation,

$$
\mathbb{E}\left[\sum_{e \in E} X_{e}\right]=\sum_{e \in E} \mathbb{E}\left[X_{e}\right]=|E| / 2 .
$$

Fingerprinting

Suppose Alice has an n-bit string x and Bob has an n-bit string y, and they want to check that they are equal. Naively this takes n bits of communication between them. We can do much better using randomization.

Alice samples a random prime number p from the set of primes that are less than $c n \ln n$, for some constant c that we shall pick later. She then sends p and $x \bmod p$ to Bob. Bob checks that $x \bmod p$ is equal to $y \bmod p$. Thus they only need to communicate $O(\log n)$ bits in this process.

If $x=y$, this will always produce the right outcome. We shall argue that if $x \neq y$, the probability that they make a mistake is going to be very small. To do this, we need a theorem:

Theorem 3 (Prime number theorem). Let $\pi(a)$ denote the number of primes that are at most a. Then $\lim _{a \rightarrow \infty} \frac{\pi(a)}{a / \ln a}=1$.

When $x \neq y$, the above process fails only when p divides $x-y$. Since $|x-y| \leq 2^{n}, x-y$ can have at most n prime factors. On the other hand, by the prime number theorem, the number of primes of size up to $c n \ln n$ is at least $c n \ln n /(\ln (c n \ln n))=\Omega(c n)$. Thus the probability that the prime Alice picks divides $x-y$ is at most $O(1 / c)$.

