
Lecture 13: Randomized Complexity Classes
Anup Rao

May 11, 2021

Probability Review

We start by reviewing a couple of useful facts from probability the-
ory.

Lemma 1 (Markov’s inequality). If X is a non-negative random variable,
then Pr[X > ` ·E [X]] < 1/`.

Proof

E [X] = ∑
k

k · Pr[X = k]

≥ ∑
k>`

(`E [X]) · Pr[X = k]

= `E [X] · ∑
k>`

Pr[X = k],

proving that Pr[X > `] ≤ 1/`.

We shall need to appeal to the Chernoff-Hoeffding Bound:

Theorem 2. Let X1, . . . , Xn be independent random variables such that
each Xi is a bit that is equal to 1 with probability ≤ p. Then Pr[∑n

i=1 Xi ≥
pn(1 + ε)] ≤ 2−ε2np/4.

Finally, we need the following trick. Suppose we toss a coin which
has a probability p of giving heads and 1− p of giving tails. Let H
denote the number of coin tosses before we see heads. Then

Fact 3. E [T] = 1/p.

Proof

E [T] = p · 1 + (1− p) · (E [T] + 1)

⇒ E [T] = 1 + (1− p) ·E [T]

⇒ E [T] p = 1

⇒ E [T] = 1/p.

Randomized Classes

There are several different ways to define complexity classes involv-
ing randomness. A turing machine with access to randomness is just
like a normal turing machine, except it is allowed to toss a random
coin in each step, and read the value of the coin that was tossed.



lecture 13: randomized complexity classes 2

BPP

We say that the randomized machine computes the function f if for
every input x, Prr[M(x, r) = f (x)] ≥ 2/3, where the probability is
taken over the random coin tosses of the machine M. BPP is the set
of functions that are computable by polynomial time randomized
turing machines in the above sense.

RP

We shall say that f ∈ RP if there is a randomized machine that
always compute the correct value when f (x) = 0, and computes the
correct value with probability at least 2/3 when f (x) = 1.

ZPP

Finally, we define the class ZPP to be the set of boolean functions
that have an algorithm that never makes an error, but whose expected
running time is polynomial in n.

Error reduction

The choice of the constant 2/3 in these definitions is not crucial, as
the following theorem shows:

Theorem 4 (Error Reduction in BPP). Suppose there is a randomized
polynomial time machine M, a boolean function f and a constant c such
that Prr[M(x, r) = f (x)] ≥ 1/2 + n−c. There for every constant d, there
is a randomized polynomial time machine M′ such that Prr[M′(x, r) =

f (x)] ≥ 1− 2−nd
.

Proof of Theorem 4: On input x, the algorithm M′ will run M
repeatedly nk times for some constant k (that we shall fix soon), and
then output the majority of the answers. Let Xi the binary random
variable that takes the value 1 only if the output of the i’th run is
incorrect.

We have that X1, . . . , Xnk are independent random variables, and
each is equal to 1 with probability at most 1/2− n−c. Thus, Here we use the fact that 1

1−ε < 1 + ε.

Pr[∑
i

Xi > nk/2] = Pr[∑
i

Xi > nk(1/2− n−c)(1/2)/(1/2− nc)]

≤ Pr[∑
i

Xi > nk(1/2− n−c)(1 + 2n−c)]

< 2−O(n−2c)nk/8

Set k to be large enough so that this probability is less than 2−nd
.

By brute force search, we can easily prove:



lecture 13: randomized complexity classes 3

Theorem 5. BPP ⊆ EXP.

Since RP is the same as the set of functions for which a random
witness is a good witness,

Theorem 6. RP ⊆ NP.

We also have:

Theorem 7. ZPP = RP ∩ coRP.

Proof Suppose f ∈ ZPP, via a randomized algorithm M whose ex-
pected running time is t(n). Consider the algorithm that simulates M
for 10t(n) steps, and outputs 0 if the simulation does not halt. Then
clearly, the algorithm only makes an error if the correct answer is 1.
On the other hand, the probability that running time of M exceeds
10t(n) is at most 1/10 (or else the expected running time would ex-
ceed t(n). Thus we obtain an RP algorithm. The same idea (reversing
the roles of 0 and 1) gives a coRP algorithm.

For the other direction, suppose f has an RP algorithm M1 and a
coRP algorithm M0. Then on input x consider the algorithm that al-
ternatively runs M0(x), M1(x), M0(x), . . . until either M1(x) outputs
1, or M0(x) outputs 0. If M1(x) = 1, then it must be that f (x) = 1.
Similarly if M0(x) = 0, it must be that f (x) = 0. In any case, one
of these two algorithms will verify the value of x in an expected con-
stant number of runs.

Theorem 8. Every function in BPP has polynomial sized circuits.

The above theorem again easily following from the Chernoff-
Hoeffding bound. We can first amplify the error probability so that
the probability of error is less than 2−n. Then by the union bound,
for each input length, there must be some fixed string r such that
M(x, r) = f (x) for each of the 2n choices of x. Then we can use a
circuit to hardcode this r and compute f in polynomial size.

We do not know whether BPP = P and this is a major open ques-
tion. However, there have been some interesting conditional results.
For example, work of Impagliazzo, Nisan and Wigderson has led to
the following theorem:

Theorem 9. If there is some function f ∈ EXP such that for every constant
ε > 0, f cannot be computed by a circuit family of size 2εn, then BPP = P.

The theorem is interesting because the assumptions don’t seem
to say anything useful about randomized computation. Moreover,
most people might believe that the assumption is true given what we
know about counting arguments. The assumption is that there is a



lecture 13: randomized complexity classes 4

function that can be computed by exponential time turing machines
but cannot be computed by subexponential sized circuits. This fact
is cleverly leveraged to derandomize any randomized computation.
The proof of this theorem is outside the scope of this course.


	Probability Review
	Randomized Classes
	Error reduction
	Randomness vs non-determinism

