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Today we shall see how algebra and finite fields can be used to
prove lower bounds on boolean circuits. As we have discussed, we do
not know of any general functions that require superlinear boolean
circuits. Nevertheless, we can prove exponential lower bounds if we
restrict the number of alternations in the circuit.

In your homework, you will prove that every boolean circuit can
be reorganized so that the circuit only has ∧ and ∨ gates, and the
only negated gates are the inputs. Formally, you can show that if an
arbitrary circuit has size s, then there is a circuit of size at most 2s
computing the same function with the above structure. The circuit is
said to have d alternations if every input to output path sees at most
d switches between ∧ and ∨ gates. Our goal today is to show that
every circuit with a constant number of alternations that computes
the parity x1 ⊕ . . .⊕ must be of exponential size.

The circuit class AC0 consists of functions that can be computed
by polynomial sized circuits with O(1) alternations. We shall prove:

Theorem 1. The parity of n bits cannot be computed in AC0.

In order to prove this theorem, we shall once again appeal to poly-
nomials, but carefully, carefully.

The theorem will be proved in two steps:

1. We show that given any AC0 circuit, there is a low degree polyno-
mial that approximates the circuit.

2. We show that parity cannot be approximated by a low degree
polynomial.

It will be convenient to work with polynomials over a prime field
Fp, where p 6= 2 (since there is a polynomial of degree 1 that com-
putes parity over F2). For concreteness, let us work with F3.

Some math background

We shall need the following facts, which we have already proved:

Fact 2. Every function f : Fn
p → F is computed by a unique polynomial if

degree at most p− 1 in each variable.
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Proof Given any a ∈ Fn
p, consider the polynomial 1a = ∏n

i=1 ∏zi∈Fp ,zi 6=ai
(Xi−zi)
(ai−zi)

.
We have that

1a(b) =

1 if a = b,

0 else.

Further, each variable has degree at most p− 1 in each variable.
Now given any function f , we can represent f using the polyno-

mial:
f (X1, . . . , Xn) = ∑

a∈Fn
p

f (a) · 1a.

To prove that this polynomial is unique, note that the space of
polynomials whose degree is at most p− 1 in each variable is spanned
by monomials where the degree in each of the variables is at most
p− 1, so it is a space of dimension pn (i.e. there are ppn

monomials).
Similarly, the space of functions f is also of dimension pn (there are
ppn

functions). Thus this correspondence must be one to one.

We shall also need the following estimate on the binomial coeffi-
cients, that we do not prove here:

Fact 3. (n
i ) is maximized when i = n/2, and in this case it is at most

O(2n/
√

n).

A low degree polynomial approximating every circuit in AC0

Suppose we are given a circuit C ∈ AC0.
We build an approximating polynomial gate by gate. The input

gates are easy: xi is a good approximation to the i’th input. Similarly,
the negation of fi is the same as the polynomial 1− fi.

The hard case is a function like f1 ∨ f2 ∨ . . . ∨ ft, which can be
computed by a single gate in the circuit. The naive approach would
be to use the polynomial ∏t

i=1 fi. However, this gives a polynomial
whose degree may be as large as the fan-in of the gate, which is too
large for our purposes.

We shall use a clever trick. Let S ⊂ [t] be a completely random set,
and consider the function ∑i∈S fi. Then we have the following claim:

Claim 4. If there is some j such that f j 6= 0, then PrS[∑i∈S fi = 0] ≤ 1/2.

Proof Observe that for every set T ⊆ [n] − {j}, it cannot be that
both

∑
i∈T

fi = 0

and
f j + ∑

i∈T
fi = 0.
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Thus, at most half the sets can give a non-zero sum.

Note that
22 = 12 = 1 mod 3

and
02 = 0 mod 3.

So squaring turns non-zero values into 1. So let us pick independent
uniformly random sets S1, . . . , S` ⊆ [t], and use the approximation

g = 1−
`

∏
k=1

1−
(

∑
i∈Sk

fi

)2


Claim 5. If each fi has degree at most r, then g has degree at most 2`r, and

Pr[g 6= f1 ∨ f2 ∨ . . . ∨ ft] ≤ 2−`.

Overall, if the circuit is of depth h, and has s gates, this process
produces a polynomial whose degree is at most (2`)h that agrees
with the circuit on any fixed input except with probability s2−` by
the union bound. Thus, in expectation, the polynomial we produce
will compute the correct value on a 1− s2−` fraction of all inputs.

Setting ` = log2 n, we obtain a polynomial of degree polylog(n)
that agrees with the circuit on all but 1% of the inputs.

Low degree polynomials cannot compute parity

Here we shall prove the following theorem:

Theorem 6. Let f be any polynomial over F3 in n variables whose degree
is d. Then f can compute the parity on at most 1/2 + O(d/

√
n) fraction of

all inputs.

Proof Consider the polynomial

g(Y1, . . . , Yn) = f (Y1 − 1, Y2 − 1, . . . , Yn − 1) + 1.

The key point is that when Y1, . . . , Yn ∈ {1,−1}, if f computes the
parity of n bits, then g computes the product ∏i Yi. Thus, we have
found a degree d polynomial that can compute the same quantity
as the product of n variables. We shall show that this computation
cannot work on a large fraction of inputs, using a counting argument.

Let T ⊆ {1,−1}n denote the set of inputs for which g(y) = ∏i yi.
To complete the proof, it will suffice to show that T consists of at
most 1/2 + O(d/

√
n) fraction of all strings.

Consider the set of all functions q : T → F3. This is a space
dimension |T|. We shall show how to compute every such function
using a low degree polynomial.
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By Fact 2, every such function q can be computed by a polynomial.
Note that in any such polynomial, since yi ∈ {1,+1}, we have that
y2

i = 1, so we can assume that each variable has degree at most 1.
Now suppose I ⊆ [n] is a set of size more than n/2, then for y ∈ T,

∏
i∈I

yi =

(
n

∏
i=1

yi

)(
∏
i/∈I

yi

)
= g(y)

(
∏
i/∈I

yi

)

In this way, we can express every monomial of q with low degree
terms, and so obtain a polynomial of degree at most n/2 + d that
computes q.

The space of all such polynomials is spanned by ∑n/2+d
i=0 (n

i ) mono-
mials. Thus, we get that

|T| ≤
n/2+d

∑
i=0

(
n
i

)

≤ 2n/2 +
d

∑
i=n/2+1

(
n
i

)
≤ 2n/2 + O(d · 2n/

√
n)

= 2n(1/2 + O(d/
√

n)),

where the last inequality follows from Fact 3.

Thus, any circuit C ∈ AC0 cannot compute the parity function.
Remark Note that the above proof actually proves something much
stronger: it proves that there is no circuit in AC0 that computes par-
ity on 51% of all inputs.


