
Lecture 16: Interactive Proofs
Anup Rao

May 25, 2021

One way to define NP is via the idea of a proof system. NP is
the set of functions f for which there is a polynomial time verifier
algorithm V such that given any x with f (x) = 1, there exists a
prover P that can prove to the verifier that f (x) = 1 by providing a
polynomial sized witness w for which V(x, w) = 1, yet if f (x) = 0, no
such prover exists.

What happens if we allow the verifier to have a longer interactive
conversation? Presumably, giving the verifier the ability to adaptively
ask the prover questions based on his previous responses should
give the verifier more power, and so allow the verifier to verify the
correctness of the value for a larger set of functions. In fact, this
does not give the verifier additional power: for if there is such an
interactive verifier V I for verifying that f (x) = 1, we can design a
non-interactive verifier that does the same job. The new verifier will
demand that the prover provide the entire transcript of interactions
between V I and a convincing prover. The new verifier can then verify
that the transcript is correct, and would have convinced V I . Thus, if f
has an interactive verifier, then f ∈ NP.

The story is more interesting if we allow the verifier to be random-
ized. We say that f ∈ IP if there is a polynomial time randomized
verifier V such that

Completeness For all x, if f (x) = 1, there is an oracle P such that
Prr[VP(x, r) = 1] ≥ 2/3.

Soundness For all x, if f (x) = 0, for every oracle P, Prr[VP(x, r) =

1] ≤ 1/3.

Since any prover can be simulated in polynomial space, if f ∈ IP,
then f ∈ PSPACE. The algorithm for f can just try all possible
sequences of messages from the prover until it finds a sequence of
messages that convinces the verifier, if such a sequence exists.

Theorem 1. IP ⊆ PSPACE.

It is easy to check that allowing the prover to be randomized does
not change the model.

We shall eventually prove that IP = PSPACE (and so IP is poten-
tially much more powerful than NP).



lecture 16: interactive proofs 2

Example: Graph non-Isomorphism

Two graphs on n vertices are said to be isomorphic if the vertices of
one of the graphs can be permuted to make the two equal.

Consider the problem of testing whether two graphs are not iso-
morphic: the boolean function f such that f (G1, G2) is 1 if and only if
G1 is not isomorphic to G2. f ∈ coNP, since the prover can just send
the verifier the permutation that proves that they are isomorphic. We
do not know if f ∈ NP, but it is easy to prove that f ∈ IP.

Here is the simple interactive protocol:

1. The verifier picks a random i ∈ {1, 2}.

2. The verifier randomly permutes the vertices of Gi and sends the
resulting graph to the prover.

3. The prover responds with b ∈ {1, 2}.

4. The verifier accepts if i = b.

If G1, G2 are not isomorphic, then any permutation of Gi deter-
mines i, so the prover can determine i and send it back. However, if
G1, G2 are isomorphic, then the graph that the prover receives has the
same distribution whether i = 1 or i = 2, thus the prover can guess
the value of i with probability at most 1/2. Repeating the protocol
several times, the verifier can make the probability of being duped by
a lying prover exponentially small.


	Example: Graph non-Isomorphism

