
Lecture 3: Tight Bounds for Circuits and Counting
Arguments
Anup Rao

April 6, 2021

Turing Machines and Circuits

In the last lecture, we discussed the two computational models
that we will largely focus on for most of this course. They are

Turing machines Essentially, these are programs with loops that com-
pute on inputs coming from {0, 1}∗.

Boolean circuits Essentially, these are programs without loops that
compute on inputs coming from {0, 1}n.

It should not be a surprise that, at a fundamental level, we have
decided to study programs. Programs are, after all, the most valuable
form of computation in practice. Further, if you think of the inputs as
having arbitrary length, you need to have loops to traverse the input.
If your input has some fixed length, it makes sense to talk about
programs without loops.

At the end of lecture last time, I discussed how you can simulate
Turing machines with boolean circuits. In a sense, this simulation
takes a program that has loops, and unrolls all the loops, to obtain a
program without loops that operates on an input of length n.

Circuit complexity

Today, we shall focus on boolean circuits. Recall that we
introduced two measures of circuit complexity: circuit depth and
circuit size. We can prove the following easy relationship between the
size and depth of a circuit. Essentially, the size is at most exponential
in the depth, since the worst case is that the circuit looks like the full
binary tree:

Fact 1. Every function computed by a circuit of depth d can be computed by
a circuit of size at most 2d+1.

Proof We prove by induction on the depth that the circuit can be
computed using at most 2d+1 − 1 gates. When the depth d = 0, the
circuit must just output the value of a variable, and so has size at
most 1 = 2d+1 − 1.



lecture 3: tight bounds for circuits and counting arguments 2

When d > 1, consider the output gate. This gate has two gates
that feed into it, each of depth at most d − 1. So by induction, the
computations of each of those gates can be carried out by circuits
of size 2d − 1. Thus the overall circuit can be computed with size
1 + 2(2d − 1) = 2d+1 − 1, as required.

In today’s lecture we discuss a matching upper bound and lower
bound for boolean circuits. On the one hand, we shall prove that
every function f : {0, 1}n → {0, 1} can be computed by a circuit of
size at most O(2n/n), and on the other hand we show that for n large
enough there is a function that cannot be computed by a circuit of
size less than 2n/(3n).

The lower bound—Counting arguments

The lower bound we prove here was first shown by Shanon. He
introduced a really simple but powerful technique to prove it, called
a counting argument.

Theorem 2. For every large enough n, there is a function f : {0, 1}n →
{0, 1} that cannot be computed by a circuit of size 2n/3n.

Proof We shall count the total number of circuits of size s, where
s > n + 2. To define a circuit of size s, we need to pick the logical
operator for each (non-input) gate, and specify where each of its
two inputs come from. There are at most 3 choices for the logical
operation, and at most s choices for where each input comes from.
So the number of choices for each non-input gate is at most 3s2.
The number of choices for an input gate or constant gate is at most
n + 2 < 3s2. So, the total number of choices for each gate is at most
3s2 + n, and the number of possible circuits of size s is at most

(3s2 + n + 2)s ≤ (4s2)s = 2s log(4s2) < 23s log s,

when n > 4.
This means that the total number of circuits of size 2n/3n is less

than 23· 2n
3n ·n = 22n

. On the other hand, the number of functions
f : {0, 1}n → {0, 1} is exactly 22n

. Thus, not all these functions can be
computed by a circuit of size 2n/(3n).

Indeed, the above argument shows that the fraction of functions
f : {0, 1}n → {0, 1} that can be computed by a circuit of size 2n/4n is

at most 2
3
4 ·2

n

22n = 1
22n−2 , which is extremely small.

Similar arguments can be used to show that not every function has
an efficient branching program (as you will do on your homework).



lecture 3: tight bounds for circuits and counting arguments 3

Not every function has an efficient communication protocol

Let us see another example of how counting arguments can be used
to prove lower bounds. We didn’t discuss this example in class, but I
add it here to illustrate how flexible counting is.

Recall that a communication protocol for computing a function
f (x, y) specifies a way for Alice and Bob to communicate with each
other in order to compute f . If x, y are n-bit strings, the number of
such functions f is 222n

: indeed there are 22n inputs x, y, and for each
choice of input, there are 2 choices for the output of the function.

The trivial protocol for computing an arbitrary function is to have
Alice send her entire input to Bob. This takes n bits of communica-
tion. Here we show:

Theorem 3. There is a function f that requires at least n− 2 bits of com-
munication.

Proof As with circuits, we do the proof by counting. To count the
number of communication protocols, observe that for every prefix of
messages communicated so far, there are 2 choices for who should
send the next bit, there are 22n

choices for the function to use to send
that next bit.

If the communication complexity is at most t bits, the number of
strings of length at most t is at most 2t+1, so the number of protocols

is thus
(

2 · 22n
)2t+1

= 2(2
n+1)2t+1 ≤ 22n+t+2

. So if t < n− 2, the number
of protocols is strictly less than the number of functions f .

The upper bounds on Circuit Size

We shall prove that every function can be computed in size O(2n/n).
To work up to the proof, we start by giving some weaker bounds.

A formula in disjunctive normal form (DNF) is a formula that
can be written as an OR of AND’s. Suppose we have a function f :
{0, 1}3 → {0, 1} that takes the value 1 on 4 inputs: 000, 111, 010 and
101. Then f can be computed using this formula:

(¬x1 ∧¬x2 ∧¬x3)∨ (x1 ∧ x2 ∧ x3)∨ (¬x1 ∧ x2 ∧¬x3)∨ (x1 ∧¬x2 ∧ x3)

Each term in the formula outputs 1 on exactly one input. The same
idea can be used to prove:

Theorem 4. Every function f : {0, 1}n → {0, 1} can be computed by a
DNF of size at most O(n · 2n).



lecture 3: tight bounds for circuits and counting arguments 4

Xn

∧ ∧

∨

¬f1 f0

f
Figure 1: Recursive construction of a
circuit for f .

Proof For every input y ∈ {0, 1}n, we can define a term Fy of size
O(n) that outputs 1 only when x = y. The term is the AND of all
variables, where the i’th variable is negated if and only if yi = 0. f
can then be computed as the OR of all Fy for which f (y) = 1.

To get a better bound, we need to use a lot more alternation be-
tween AND and OR gates. We can use a recursive construction to
prove:

Theorem 5. Every function f : {0, 1}n → {0, 1} can be computed by a
circuit of size at most O(2n).

Proof We construct the circuit recursively. When n = 1, there
is clearly a constant sized circuit that computes f , since f must be
either a constant, x1 or ¬x1.

For n > 1, let f0 denote the function on n− 1 bits given by f0(x) =
f (x, 0), and f1(x) = f (x, 1). Then by induction we can compute f0, f1

recursively, and combine them using the value of the last bit to obtain
f , as in Figure 1. When xn = 1, the circuit outputs f1(x1, . . . , xn−1),
and when xn = 0, the circuit outputs f0(x1, . . . , xn−1).

If Sn is the size of the resulting circuit when the underlying func-
tion takes an n bit input, we have proved that

Sn ≤ 2Sn−1 + 5.

Expanding this recurrence, and using the fact that S1 ≤ 5, we get
that

Sn ≤
n

∑
i=1

2i5 = 5 · (2n+1 − 1) < 10 · 2n,

where here we used the formula for computing the sum of a geomet-
ric series.

Finally, we add one more idea to shave off another factor of n: Lupanov proved this.



lecture 3: tight bounds for circuits and counting arguments 5

Theorem 6. Every function f : {0, 1}n → {0, 1} can be computed in size
O(2n/n) and depth O(n).

Proof We will use a recursive construction, but stop the recur-
sion at a certain point. For a parameter t, we start by computing
every function of the first t bits of the input. There are 22t

such func-
tions, and each one can be computed by a circuit of size O(2t) us-
ing Theorem 5, so we can compute every function using at most
O(2t · 22t

) ≤ O(2t+2t
) gates.

To compute the function f , we use the recursive construction de-
fined in the proof of Theorem 5 for n− t steps. After n− t steps, we
have put down O(2n−t) gates, and need to compute functions on the
first t bits, but since we have already computed every such function,

we are done. The size of the final circuit is thus O
(

2t+2t
+ 2n−t

)
.

Setting t = log n− 1, we get a circuit of size

O(2log n−1+n/2 + 2n−log n+1) ≤ O(2n/n).


	Turing Machines and Circuits
	Circuit complexity
	The lower bound—Counting arguments
	Not every function has an efficient communication protocol
	The upper bounds on Circuit Size

