
Lecture 4: Counting Arguments for Turing Ma-
chines
Anup Rao

April 8, 2021

In the last lecture, we used counting arguments to show that
there are functions that cannot be computed by circuits of size
o(2n/n). If we were to try and use the same approach to show that
there are functions f : {0, 1}∗ → {0, 1} not computable Turing
machines we would first try to show that:

turing machines � # functions f .

This approach doesn’t seem like it makes any sense at first, because
both numbers here are infinite. Luckily, mathematicians have long
studied how to compare the sizes of infinite sets.

Recall the definitions of the following sets:

N = {1, 2, 3, . . . } the natural numbers

Z = {. . . ,−2,−1, 0, 1, 2, . . . } the integers

2N = {A ⊆N} the set of sets of natural numbers

Q = {i/j : i, j ∈ Z, j 6= 0} the rational numbers

R =

{
lim
i→∞

xi : x1, x2, . . . ∈ Q is a convergent sequence
}

the real numbers

To compare the sizes of these sets, we use the concept of countabil-
ity. A function φ : N → S is said to be surjective if for every s ∈ S,
there is an i ∈N such that φ(i) = s.

Definition 1. A set S is countable, if there is a surjective function φ :
N→ S.

Equivalently, S is countable if there is a list φ(1), φ(2), . . . of ele-
ments from S, such that every element of S shows up at least once on
the list. In a sense, if S is countable, that corresponds to asserting that
|S| ≤ |N|.

Let us try to understand which of the sets we have discussed are
countable.

Fact 2. N is countable.

Proof Consider the list 1, 2, 3, This obviously contains every
element of N.

Fact 3. Z is countable.

lecture 4: counting arguments for turing machines 2

Proof Consider the list 0, 1,−1, 2,−2, 3,−3, This obviously
contains every element of Z.

Fact 4. Z×Z = {(i, j) : i, j ∈ Z} is countable.

Proof Consider the list

(0, 0), (1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0),

(−1,−1), (0,−1), (1,−1), (2,−1), . . . ,

shown in Figure 1. This list contains every element of Z×Z. Indeed,
we are enumerating all pairs (i, j) where the max{|i|, |j|} is 0, then
all pairs where max{|i|, |j|} is 1 and so on. Clearly, every pair occurs
somewhere in the list.

(0,0)

Figure 1: Enumeration of Z×Z.

Fact 5. Q is countable.

Proof Since Z×Z is countable, just take the list of all pairs from
Z×Z, and discard an entry if j = 0 and replace it with i/j if j 6= 0.
This gives an enumeration of Q.

The interesting thing is that some sets can be shown to be un-
countable, using the technique of diagonalization.

Fact 6. 2N is not countable.

Proof Suppose there was some list of sets A1, A2, . . . , then consider
the set

T = {i : i ∈N, i /∈ Ai}.

lecture 4: counting arguments for turing machines 3

We claim that T is not in the list. Indeed, suppose T = Aj for some j.
Then if j ∈ Aj, j /∈ T by our construction, and if j /∈ Aj, then j ∈ T. In
either case, T 6= Aj.

The proof we just used is called a proof by diagonalization, be- It was discovered by Cantor

cause we can think of doing it using the picture described in Figure
2. We encode each set in our list using a binary string. The set T

A1

A2

A3

A4

A5

1 2 3 4 5

1

0

1

1

1

0

0

0

0

1

1

1

1

0

1

0

0

1

0

0

0

0

1

0

0

A1 = {1,2,…}

A1 = {3,…}

A3 = {1,3,4,5,…}

A4 = {1,…}

A5 = {1,2,3,…}

T = {2,4,5,…} T 0 1 0 1 1

Figure 2: Diagonalization of a list of
sets.

we picked is obtained by taking the set that is obtained by choosing
something that disagrees with the diagonal in the picture. Can you use a similar idea to show that

the real numbers are not countable?A very similar idea can be used to show that the set of functions
f : {0, 1}∗ → {0, 1} is not countable

Fact 7. The set of functions mapping N to {0, 1} is not countable.

Proof Suppose there is an enumeration f1, f2, . . . of all the func-
tions. Then consider the function f defined by

f (i) =

1 if fi(i) = 0,

0 otherwise.

Now f cannot appear in the list, because for every i, f (i) 6= fi(i), so
f 6= fi.

Now, note that the set of binary strings {0, 1}∗ is itself countable.
You can enumerate them by enumerating the strings of length 0, then
the strings of length 1, and so on. But this means that the same proof
as above shows that the set of functions f : {0, 1}∗ → {0, 1} is not
countable. Indeed, given any list of functions f1, f2, . . . , the function f
defined below cannot be on the list:

f (x) =

1 if x is the i’th binary string and fi(x) = 0,

0 otherwise.

lecture 4: counting arguments for turing machines 4

But this last fact already implies that there must be a function
that cannot be computed by any Turing machine! Indeed, the set
of Turing machines is countable, because we can enumerate them
by enumerating the set of all programs. This means that the set of
functions that are computable by Turing machines is also countable.
For concreteness we give a direct proof below:

Theorem 8. There is a function that is not computed by any Turing Ma-
chine.

Proof Given a string α, we write Mα to denote the Turing Machine
whose code is α. Consider the function f : {0, 1}∗ → {0, 1} defined as
follows:

f (α) =

1 if Mα(α) = 0

0 else.

Note that above, if the machine Mα does not halt on input α, then
f (α) = 0.

No Turing Machine can compute this function, for if there was
some machine that could, then let γ denote the binary encoding of
its code. Then we have that Mγ(γ) = f (γ), but this contradicts the
definition of f , since if f (γ) = 0, then Mγ(γ) cannot be 0, and if
f (γ) = 1, Mγ(γ) cannot be 1.

Let us point out that this is philosophically a very powerful fact.
A consequence of it is that assuming the Church-Turing Thesis is
true, there are some ways to manipulate information that can never
occur in the universe. It seems hard to imagine a physical process
that violates the Church-Turing thesis, and it also seems hard to
stomach the fact that the universe cannot manipulate information
in a particular way, yet one of those two (admittedly wishy washy)
strange things must happen.

You may object that the uncomputable f that we found above is
very unnatural, but actually it is not hard to come up with natural
examples that are also impossible to compute using Turing Machines.

For example, we can define the function HALT : {0, 1}∗ → {0, 1}
that takes as input two strings α, x, and then decides whether Mα(x)
halts or runs forever. This seems like a very useful function to com-
pute, but it is also uncomputable.

To reason about halting, we first need a basic fact about Turing
machine—there is a machine that can compile and run the code of
any other machine efficiently:

Theorem 9 (Universal Simulator). There is a turing machine M such
that given the code of any Turing machine α and an input x as input to M,

lecture 4: counting arguments for turing machines 5

if α takes T steps to compute an output for x, then M computes the same
output in O(CT log T) steps, where here C is a number that depends only
on α and not on x.

Now we are ready to prove that HALT is not computable.

Theorem 10. HALT is not computable by a Turing Machine.

Proof Suppose it was. Then consider the machine M that on in-
put α first simulates HALT(α, α). If the answer is that Mα(α) halts,
then M simulates Mα(α) and outputs the opposite of its output. If
Mα(α) does not halt, then M outputs 0. Then M computes the un-
computable function f above.

Gödel’s Incompleteness Theorem

Gödel’s famous incompleteness heorem is one of the most
significant mathematical results of the last century. The appeal of the
result is that (like many of the results in complexity theory) it proves
something that seems to address the nature of our universe. If I were
to put the statement of the theorem into words it would be

There is a truth that cannot be proved.

This result was very disturbing to mathematicians and scientists,
because it attacks a core assumption of the scientific enterprise. The
goal of modern science is to boil down the functioning of the uni-
verse to a small set of rules. The hope was that all phenomena that
occur in the universe can eventually be explained as consequences of
a small set of rules. Gödel’s theorem is a dagger to the heart of that
hope—it sounds eerily similar to something a religious leader might
say in lieu of giving a scientific explanation:

This is true because it is God’s will.

Now, let us get more rigorous and prove the theorem. I should
note here that I am not going to prove the incompleteness theorem
in the form that it was initially conceived and proved. Gödel proved
these results in 1931, before he knew the definition of Turing ma-
chines, and that meant he had to make all kinds of complicated argu-
ments and definitions. Armed with the definitions we have already
seen in this course, we will be able to take a much more straightfor-
ward path to proving essentially the same thing. Diagonalization was used to prove

Gödel’s incompleteness theorem in its
original form.

We need to start by making more rigorous what we mean by
truths that can/cannot be proved. Formally this is done by defining a

lecture 4: counting arguments for turing machines 6

proof system. For us it is enough to think of a proof system as a Turing
machine M with the property that given a theorem τ and a candidate
proof π, M(τ, π) outputs 1 only if the statement τ is true. Intuitively,
the Turing machine M is a checker for all proofs. Given a theorem τ

and a proof for the theorem π, the machine simply checks that each
line of the proof follows from the previous one and eventually leads
to the statement of the theorem τ. To make this completely formal,
we need to specify exactly how theorems and proofs will be encoded
as binary strings, but us ignore such details here.

Our goal is to show that for every such M, there is a theorem τ

which is true, yet M(τ, π) will never output 1, no matter what π is.
So, there is no proof π that convinces the checker that τ is true.

Now, let us turn to finding the true theorem that we will use.
Crucial to the proof is a beautiful measure of the complexity of The argument given here is due to

Chaitin, who proved this in the 1968.binary strings, which is interesting in its own right.
Given x ∈ {0, 1}∗, its Kolmogorov complexity K(x) is the length of

the shortest program α such that Mα(.) = x. Namely it is the length
of the shortest program that outputs x. For each x ∈ {0, 1}∗, N ∈ N,
let Sx,N be the assertion

Sx,N : K(x) > N.

Fact 11. For every N, there is an x for which Sx,N is true.

Proof There are only a finite number of programs of length N, so
for each N, there are only a finite number of x’s such that K(x) ≤ N.
This means that almost all statements Sx,N are true.

To prove Godel’s theorem, suppose there is a proof checking ma-
chine M. Consider the following program MN :

• Enumerate over all pairs (x, α), where x ∈ {0, 1}∗, α ∈ {0, 1}∗. If
M(Sx,N , α) = 1, output x.

If every statement Sx,N has a proof convincing M, then MN would
always halt, since it would eventually find some string x and a proof
α proving Sx,N . But the program MN can be described using just
O(log N) bits, and it outputs a string x for which K(x) > N. For N
large enough, this contradicts the definition of K(x).

