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The only way we know how to prove lower bounds on the run-
ning time of Turing Machines is via diagonalization. Can we hope to
show that P 6= NP by some kind of diagonalization argument? In
this lecture, we discuss an issue that is an obstacle to finding such a
proof.

Definition 1 (Oracle Machines). Given a function O : {0, 1}∗ → {0, 1},
an oracle-machine is a Turing Machine that is allowed to use a special
oracle tape to make queries to O. Each query to O takes unit time.

We can define PO, NPO as functions computable in poly time (resp
nondeterministic poly time) with oracle access to O.

Then we have the following theorem:

Theorem 2. There exists an oracle A such that PA = NPA, and an oracle
B such that PB 6= NPB.

The theorem gives a hint about one of the ways in which it will be
hard to determine whether or not P = NP. Any such proof must not
work in the relativized worlds where access to A, B is permitted. On
the other hand, the kinds of proofs that we have seen using diago-
nalization do relativize—the same argument would work even if the
machines have oracle access to some oracle O.
Proof Let A be the function that on input α, x outputs 1 if and
only if Mα(x) outputs 1 in 2|x| steps. Then PA = EXP, since every
exponential time computation can be simulated with access to A,
and every query to A can be simulated in exponential time. Also
NPA = EXP, since in exponential time we can simulate all queries to
A and simulate all nondeterministic choices.

The second part is more interesting. We shall define an oracle
B : {0, 1}∗ → {0, 1} and a function f ∈ NPB such that f /∈ PB. f is
defined in terms of B as follows:

f (x) =

1 if there exists y such that |y| = |x| and B(y) = 1,

0 else.

We first show that f ∈ NPB: a non-deterministic machine can
guess y of the same length as x, and make a single query to verify
that B(y) = 1.
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To define B, we shall use diagonalization. Let M1, M2, . . . , Mi, . . . ,
be an enumeration of all machines that query B. Our goal is to make
sure that the i′th machine fails to compute the correct value of f (x) in
time 2n/10, for some n where n = |x|. To do this we define the value
of B gradually. We define the value of B in phases. After each phase,
we shall have defined the value of B on a finite set of strings.

In Phase i, let t be so large that the value of B is not yet defined
on each string of length t. Then run the i’th machine Mi(1t) for 2t/10

steps. Each time Mi queries a string of B whose value has not yet
been defined, return 0 and define the value of B on that string to be
0. If Mi halts with value 1, then set B to be 0 on all strings of length
t. If Mi halts with value 0, then pick a string y of length t that Mi(1t)

did not query (note that such a string always exists since there are 2t

binary stings of length t and Mi did not take more than 2t/10 steps),
and set B(y) = 1.

Set the value of B on strings that are not defined by the above
process to be 0.

Suppose for the sake of contradiction that f ∈ PB. Then consider
the machine M that computes f . Let i be the index such that the
i’th machine in the enumeration is M and t be such that Mi(1t) was
used to define B on strings of length t during the i’th phase. Clearly,
f (1t) 6= M(1t) and hence M does not compute f .


