CSE431: Complexity Theory

Homework 1: Solutions

Due:

1. In lecture we proved that any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed by a branching program in the form of an $n+1$-layer binary tree, which has size 2^{n+1}. Form this construction for f, and remove the last t layers, leaving a binary tree of size 2^{n-t} whose leaf nodes do not have connections to output nodes. Each leaf node of this binary tree is represented by a sequence $x_{1}, x_{2}, \ldots, x_{n-t}$ of binary digits that represents the path taken to get to the node.
Additionally, using the same construction, create a binary tree branching program of size 2^{t+1} for every possible function of t bits $\{0,1\}^{t} \rightarrow\{0,1\}$. For a fixed sequence $x_{1}, x_{2}, \ldots, x_{n-t}$ of binary digits, define $f_{x_{1}, x_{2}, \ldots, x_{n-t}}$ to be the t-bit function defined by $f_{x_{1}, x_{2}, \ldots, x_{n-t}}\left(x_{n-t+1}, \ldots, x_{n}\right)=$ $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
Now replace each leaf node in the truncated binary tree of height $n-t$ discussed above with the root node of one of these new trees, specifically replacing the leaf under the path $x_{1}, x_{2}, \ldots, x_{n-t}$ with the root node of the tree computing $f_{x_{1}, x_{2}, \ldots, x_{n-t}}$.
When the resulting branching program takes in a sequence $x_{1}, x_{2}, \ldots, x_{n}$, it first traverses to the root node for the tree computing $f_{x_{1}, x_{2}, \ldots, x_{n-t}}$, and then takes the next t bits in as input to compute $f_{x_{1}, x_{2}, \ldots, x_{n-t}}\left(x_{n-t+1}, \ldots, x_{n}\right)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. In other words, the resulting branching program computes f.
This construction uses a binary tree of size 2^{n-t} and a further tree of size 2^{t+1} for each of the $2^{2^{t}}$ functions of t bits. Thus the construction uses

$$
O\left(2^{n-t}+2^{2^{t}+t+1}\right)=O\left(2^{n-\log (n)+1}+2^{\frac{n}{2}+\log (n)}\right)=O\left(2^{n-\log (n)}\right)=O\left(\frac{2^{n}}{n}\right)
$$

nodes, noting that the second equality holds because $\frac{n}{2}+\log (n)$ is asymptotically less than $n-\log (n)+1$.

Common Errors/Issues.

- Some solutions did not explicitly show how to construct the branching program for the function you want to compute. Explicitly showing it can definitely make your solution clearer.

2. Consider a branching program with k nodes and input size n. Each node is either labeled with an output from $\{0,1\}$ or labeled by an input variable from $\left\{x_{1}, \ldots, x_{n}\right\}$. In the latter case, there are two edges going out (with different labels) from that node, each pointing to one of the k nodes. Therefore, there are at most $2+n k^{2}$ different configurations for a single node. And so there are at most $\left(2+n k^{2}\right)^{k}$ different branching programs in total. Since a branching program contains at least one node for each input variable and an output node, we have $k \geq n+1$, and therefore

$$
\left(2+n k^{2}\right)^{k} \leq\left((n+1) k^{2}\right)^{k}=O\left(k^{3 k}\right)=O\left(2^{3 k \log k}\right)
$$

1: Solutions-1

For $k=\frac{2^{n}}{c n}$, the number of different branching programs is bounded by

$$
O\left(2^{3 \cdot 2^{n} / c n \cdot \log \left(2^{n} / c n\right)}\right)=O\left(2^{3 \cdot 2^{n} / c n \cdot \log \left(2^{n}\right)}\right)=O\left(2^{3 \cdot 2^{n} / c}\right)
$$

On the other hand, there are $2^{2^{n}}$ different functions from $\{0,1\}^{n}$ to $\{0,1\}$. For $c=4$, the number of different branching programs is strictly less than $2^{2^{n}}$ for large enough n. Therefore, there is a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a branching program with less than $\frac{2^{n}}{4 n}$ nodes.

Common Errors/Issues.

- When we consider the two edges going out from a single node in a branching program with s nodes, the number of arrangements should be upper bounded by s^{2} instead of $\binom{s}{2}$ or $2 \cdot\binom{s}{2}$ - the two edges have different labels and can go to the same node.
- When counting the number of possible choices for a node, we should consider the output nodes 0,1 . Those nodes don't have output edges, so there isn't a s^{2} multiplied in the number. That is the number of choices for a node should be $n s^{2}+2$ instead of $(n+2) s^{2}$.

3. We count both (i) the number of functions on n bits, and (ii) the number of large fan-in circuits of size $2^{n / 3}$. Comparing these two counts will give us the answer.
For (ii), in lecture we saw that the number of different functions on n bits is $2^{2^{n}}$. We now count (ii), the number of large fan-in circuits. Let $s=2^{n / 3}$ denote the size of the circuit. For each non-input gate, there are s other gates that could feed into it, resulting in a total of $\binom{s}{n / 2}$ combinations of inputs. It will be convenient to use the bound $\binom{s}{n / 2} \leq(2 e s / n)^{n / 2} \ll s^{n}$. Each gate can compute any function on $n / 2$ input bits, and there are $2^{2^{n / 2}}$ possible functions. For each input gate, there are n possible choices for the input variable. Therefore, the number of distinct circuits is at most

$$
\left(2^{2^{n / 2}} \cdot\binom{s}{n / 2}+n\right)^{s} \leq\left(2 \cdot 2^{2^{n / 2}} \cdot s^{n}\right)^{s} .
$$

For $s=2^{n / 3}$,

$$
\left(2 \cdot 2^{2^{n / 2}} \cdot s^{n}\right)^{s}=2^{2^{n / 3}} \cdot 2^{2^{n / 2} \cdot 2^{n / 3}} \cdot 2^{2^{n / 3} \cdot n \cdot \log \left(2^{n / 3}\right)}=2^{2^{n / 3}+2^{5 n / 6}+2^{n / 3} \cdot n^{2} / 3}
$$

When n is large enough,

$$
2^{2^{n / 3}+2^{5 n / 6}+2^{n / 3} \cdot n^{2} / 3} \leq 2^{2^{5 n / 6+2}} .
$$

Therefore, for large enough n we have

$$
\text { number of } n \text {-bit functions }=2^{2^{n}} \gg 2^{2^{5 n / 6+2}}
$$

\gg number of large fan - in circuits with $2^{n / 3}$ gates .

Common Errors/Issues.

- Some of you missed the $2^{2^{n / 2}}$ term in the counting argument.
- Some ignored the possibility that the gate could be an input gate while counting.

4. Let $c(g)$ be the number of gates used to compute a gate g in the formula. We first prove that for any formula of size s there exists a gate g in the formula such that $\frac{1}{3} s \leq c(g) \leq \frac{2}{3} s+1$. Let $\left(g_{n}\right)=g_{1}, g_{2}, \ldots$ be the sequence defined in the hint. By our definition, g_{1} is always the output gate and $c\left(g_{i}\right)-c\left(g_{i+1}\right) \geq 1$, so this sequence have non-zero finite length. Since $c\left(g_{1}\right)=s$, there exists at least one gate g in the sequence with $c(g) \geq \frac{2}{3} s$. Let i be the largest index with $c\left(g_{i}\right) \geq 2 s / 3+1>5$, by the assumption that $s>6$. g_{i} cannot be an output gate, since $c\left(g_{i}\right)>1$. We claim that $\frac{1}{3} s \leq c\left(g_{i+1}\right) \leq \frac{2}{3} s+1$. This is because $c\left(g_{i+1}\right) \leq \frac{2}{3} s$ by the choice of i, yet we also have

$$
c\left(g_{i+1}\right) \geq\left(c\left(g_{i}\right)-1\right) / 2 \geq\left(\frac{2}{3} s+1-1\right) / 2=\frac{1}{3} s
$$

This complete the first part of the proof.
Let g be the gate given by the argument in the first part of the problem. Now, let f_{1} be the function computed by the formula when g and all gates that are used to compute g are removed from the formula computing f, and the gate reading g now reads the constant 1 . Define f_{0} similarly. First observe that

$$
f=\left(g \wedge f_{1}\right) \vee\left(\neg g \wedge f_{0}\right)
$$

We now recursively construct a formula for g, f_{1} and f_{0} (Note that the function computed by the gate g is also referred to as g). To analyze the recursion, let $D(a)$ denote the depth of the formula of size a. Note that $s / 3 \leq c(g) \leq 2 s / 3+1$. In addition, $c\left(f_{1}\right) \leq s-c(g)+1 \leq$ $2 s / 3+1$ (the additive term of 1 accounts for the constant input that replaces g). Analogously, $c\left(f_{1}\right) \leq 2 s / 3+1$. Therefore,

$$
D(s) \leq D(2 s / 3+1)+3
$$

This is because, the depth of f is at most the sum of 3 and the maximum depth of formulas computing f_{1}, f_{0}, g. Note that $D(6) \leq 6$, and this corresponds to the base case as the argument from the first part is valid only when the size of the formula is more than 6 . Solving this recurrence implies that $D(s) \leq O(\log s)$ as desired.

Common Errors/Issues.

- Most solutions did not explicitly discuss the recursive relation to analyze the construction. It is not a must, but definitely improves clarity.
- Many did not notice that the argument in the first part works only when the size of the formula is more than 6 and hence the base case is when the size is 6 .
- Some did not discuss the base case.
- Some did not discuss the upper bounds on $c(g), c\left(f_{1}\right), c\left(f_{0}\right)$ which are crucial for the argument.

