
CSE431: Complexity Theory 2023

Homework 1: Solutions

Due:

1. In lecture we proved that any function f : {0, 1}n → {0, 1} can be computed by a branching
program in the form of an n+1-layer binary tree, which has size 2n+1. Form this construction
for f , and remove the last t layers, leaving a binary tree of size 2n−t whose leaf nodes do not
have connections to output nodes. Each leaf node of this binary tree is represented by a
sequence x1, x2, ..., xn−t of binary digits that represents the path taken to get to the node.

Additionally, using the same construction, create a binary tree branching program of size 2t+1

for every possible function of t bits {0, 1}t → {0, 1}. For a fixed sequence x1, x2, ..., xn−t of bi-
nary digits, define fx1,x2,...,xn−t to be the t-bit function defined by fx1,x2,...,xn−t(xn−t+1, ..., xn) =
f(x1, x2, ..., xn).

Now replace each leaf node in the truncated binary tree of height n − t discussed above
with the root node of one of these new trees, specifically replacing the leaf under the path
x1, x2, ..., xn−t with the root node of the tree computing fx1,x2,...,xn−t .

When the resulting branching program takes in a sequence x1, x2, ..., xn, it first traverses
to the root node for the tree computing fx1,x2,...,xn−t , and then takes the next t bits in as
input to compute fx1,x2,..,xn−t(xn−t+1, ..., xn) = f(x1, x2, ..., xn). In other words, the resulting
branching program computes f .

This construction uses a binary tree of size 2n−t and a further tree of size 2t+1 for each of the
22

t
functions of t bits. Thus the construction uses

O(2n−t + 22
t+t+1) = O(2n−log(n)+1 + 2

n
2
+log(n)) = O(2n−log(n)) = O(

2n

n
)

nodes, noting that the second equality holds because n
2 + log(n) is asymptotically less than

n− log(n) + 1.

Common Errors/Issues.

• Some solutions did not explicitly show how to construct the branching program for the
function you want to compute. Explicitly showing it can definitely make your solution
clearer.

2. Consider a branching program with k nodes and input size n. Each node is either labeled
with an output from {0, 1} or labeled by an input variable from {x1, ..., xn}. In the latter
case, there are two edges going out (with different labels) from that node, each pointing to
one of the k nodes. Therefore, there are at most 2 + nk2 different configurations for a single
node. And so there are at most (2 + nk2)k different branching programs in total. Since a
branching program contains at least one node for each input variable and an output node, we
have k ≥ n + 1, and therefore

(2 + nk2)k ≤ ((n + 1)k2)k = O(k3k) = O(23k log k).

1: Solutions-1



For k = 2n

cn , the number of different branching programs is bounded by

O(23·2
n/cn·log(2n/cn)) = O(23·2

n/cn·log(2n)) = O(23·2
n/c).

On the other hand, there are 22
n

different functions from {0, 1}n to {0, 1}. For c = 4, the
number of different branching programs is strictly less than 22

n
for large enough n. Therefore,

there is a function f : {0, 1}n → {0, 1} that cannot be computed by a branching program
with less than 2n

4n nodes.

Common Errors/Issues.

• When we consider the two edges going out from a single node in a branching program
with s nodes, the number of arrangements should be upper bounded by s2 instead of

(
s
2

)
or 2 ·

(
s
2

)
- the two edges have different labels and can go to the same node.

• When counting the number of possible choices for a node, we should consider the output
nodes 0, 1. Those nodes don’t have output edges, so there isn’t a s2 multiplied in the
number. That is the number of choices for a node should be ns2 +2 instead of (n+2)s2.

3. We count both (i) the number of functions on n bits, and (ii) the number of large fan-in
circuits of size 2n/3. Comparing these two counts will give us the answer.

For (ii), in lecture we saw that the number of different functions on n bits is 22
n
. We now

count (ii), the number of large fan-in circuits. Let s = 2n/3 denote the size of the circuit.
For each non-input gate, there are s other gates that could feed into it, resulting in a total of(

s
n/2

)
combinations of inputs. It will be convenient to use the bound

(
s

n/2

)
≤ (2es/n)n/2 � sn.

Each gate can compute any function on n/2 input bits, and there are 22
n/2

possible functions.
For each input gate, there are n possible choices for the input variable. Therefore, the number
of distinct circuits is at most(

22
n/2 ·

(
s

n/2

)
+ n

)s

≤
(

2 · 22n/2 · sn
)s

.

For s = 2n/3,(
2 · 22n/2 · sn

)s
= 22

n/3 · 22n/2·2n/3 · 22n/3·n·log(2n/3) = 22
n/3+25n/6+2n/3·n2/3

When n is large enough,

22
n/3+25n/6+2n/3·n2/3 ≤ 22

5n/6+2
.

Therefore, for large enough n we have

number of n−bit functions = 22
n � 22

5n/6+2

� number of large fan− in circuits with 2n/3 gates .

1: Solutions-2



Common Errors/Issues.

• Some of you missed the 22
n/2

term in the counting argument.

• Some ignored the possibility that the gate could be an input gate while counting.

4. Let c(g) be the number of gates used to compute a gate g in the formula. We first prove that
for any formula of size s there exists a gate g in the formula such that 1

3s ≤ c(g) ≤ 2
3s + 1.

Let (gn) = g1, g2, . . . be the sequence defined in the hint. By our definition, g1 is always
the output gate and c(gi) − c(gi+1) ≥ 1, so this sequence have non-zero finite length. Since
c(g1) = s, there exists at least one gate g in the sequence with c(g) ≥ 2

3s. Let i be the largest
index with c(gi) ≥ 2s/3 + 1 > 5, by the assumption that s > 6. gi cannot be an output gate,
since c(gi) > 1. We claim that 1

3s ≤ c(gi+1) ≤ 2
3s + 1. This is because c(gi+1) ≤ 2

3s by the
choice of i, yet we also have

c(gi+1) ≥ (c(gi)− 1)/2 ≥ (
2

3
s + 1− 1)/2 =

1

3
s

This complete the first part of the proof.

Let g be the gate given by the argument in the first part of the problem. Now, let f1 be
the function computed by the formula when g and all gates that are used to compute g are
removed from the formula computing f , and the gate reading g now reads the constant 1.
Define f0 similarly. First observe that

f = (g ∧ f1) ∨ (¬g ∧ f0).

We now recursively construct a formula for g, f1 and f0 (Note that the function computed
by the gate g is also referred to as g). To analyze the recursion, let D(a) denote the depth of
the formula of size a. Note that s/3 ≤ c(g) ≤ 2s/3 + 1. In addition, c(f1) ≤ s − c(g) + 1 ≤
2s/3+1 (the additive term of 1 accounts for the constant input that replaces g). Analogously,
c(f1) ≤ 2s/3 + 1. Therefore,

D(s) ≤ D(2s/3 + 1) + 3.

This is because, the depth of f is at most the sum of 3 and the maximum depth of formulas
computing f1, f0, g. Note that D(6) ≤ 6, and this corresponds to the base case as the argument
from the first part is valid only when the size of the formula is more than 6. Solving this
recurrence implies that D(s) ≤ O(log s) as desired.

Common Errors/Issues.

• Most solutions did not explicitly discuss the recursive relation to analyze the construc-
tion. It is not a must, but definitely improves clarity.

• Many did not notice that the argument in the first part works only when the size of the
formula is more than 6 and hence the base case is when the size is 6.

• Some did not discuss the base case.

• Some did not discuss the upper bounds on c(g), c(f1), c(f0) which are crucial for the
argument.

1: Solutions-3


