
CSE431: Complexity Theory

Homework 2

Anup Rao Due:

1. Suppose we can compute h(α) for every α, we show that we can compute the Halting Problem
to obtain a contradiction.

Let (α, x) be the input of the Halting Problem, we want to decide if Mα(x) halts or not.
To do this, we construct a Turing Machine M ′

α,x that ignores its input and simulates Mα on
x. Whenever the simulation ends, it outputs 1. Let β be the code of M ′

α,x. Since we can
compute h, we can test if h(β) = 0 or h(β) = 1. Since M ′

α,x ignores its input, it halts with
output 1 for all inputs if and only if Mα halts on x. Therefore, when h(β) = 0 we know that
Mα does not halt on x and when h(β) = 1 we know that Mα does halt on x. Thus, we can
decide whether Mα(x) halts or not by computing h(β) - a contradiction.

2. Since every Boolean function f : {0, 1}n → {0, 1} can be computed by a circuit of size O(2n),
we know that in particular, the function h from Problem 1 can be computed by circuits of size
O(2n). We will next show that a slight modification of this function that can be computed
by much smaller circuit even though the function is not computable by Turing machines.

Let g(x, y) be a function that partitions its input of length into x, y where x is of length log n,
and y is of length n− log n, and g(x, y) = h(x). We first note that g is also not computable
by any Turing machine, for otherwise, any Turing Machine M computing g could be used to
compute h(α). Now we show a polynomial sized circuit computing g. Assume the input to
the circuit is n bits. Since g is only a function of the first log n bits, g can be computed by a
circuit of size 2O(logn) = nO(1).

3. We prove this by giving a reduction from 3SAT to IP . We need to convert the clauses of the
given 3SAT formula to a matrix A and vector b.

Given a clause like x1∨ 6= x2 ∨ x3, we can express it using the inequality:

x1 + (1− x2) + x3 ≥ 1

which is equivalent to
x1 − x2 + x3 ≥ 0

We see that the inequality is satisfied if and only if one of the three literals in the clause is
set to true. In this way, every clauses can be converted into a linear inequality involving 3
variables in polynomial time.

4. Let V (x,w) be the verifier of an NP problem. Then in polynomial time, we can compute the
code of a machine M that does the following: M(x) runs over all choices for w, and computes
V (x,w). If V (x,w) outputs 1, then M halts. If V (x,w) outputs 0 for all w, then M enters
into an infinite loop.

If α is the code of M , then we see that HALT (α, x) = V (x,w). So we have shown that every
NP problem can be reduced to the halting problem.

2-1



HALT cannot be NP-complete, because every NP-complete problem is in EXP, and HALT
cannot be computed by a Turing machine.

2-2


