
Chapter 9: TQBF
Anup Rao

February 14, 2023

The TQBF function maps the set of totally quantified boolean formu-
las to 0 or 1. A totally quantified boolean formula is something that
looks like this:

ψ = ∃x1∀x2∃x3 · · · ∃xnφ(x1, . . . , xn),

where here φ is a boolean formula on the variables x1, . . . , xn.

TQBF(ψ) = 1 if and only ψ is true.

TQBF’s help characterize PSPACE.

Lemma 1. TQBF(ψ) for ψ = ∃x1∀x2∃x3 · · · ∃xnφ(x1, . . . , xn) can be
computed in space O(m · n), where size of φ is m. In other words, TQBF ∈
PSPACE.

Proof First note that for every fixing of x1, . . . , xn, φ can be com-
puted in space O(m). Let

A = ∀x2∃x3 · · · ∃xnφ(0, x2, . . . , xn)

and
B = ∀x2∃x3 · · · ∃xnφ(1, x2, . . . , xn).

We know that TQBF(ψ) = TQBF(A) ∨ TQBF(B) (similarly we will
have to compute A ∧ B when the first quantifier is a ∀). Writing down
A takes at most O(m) space. Let S(n) denote the space required to
compute TQBF(ψ). Now, computing A recursively uses S(n − 1)
space. After computing A, we can store the answer (one bit) and
erase all contents of the tape that was used to compute A. We then
write down B and compute TQBF(B) recursively. Overall, we have
that S(n) = S(n− 1) + O(m). As we know that S(0) = O(m), we can
conclude that S(n) = O(m · n).

Theorem 2. For every boolean f ∈ PSPACE, there is a polynomial time
computable function g mapping bits to truly quantified boolean formulas
such that f (x) = TQBF(g(x)).

Proof We shall show how to use the formula to encode connectiv-
ity in the configuration graph of the machine that computes f . This is
a graph of size 2O(s(n)) = 2poly(n).

We generate a formula ψi(A, B) in poly(n) time that checks whether
there is a path of length ≤ 2i from A to B. When i = 0. ψi(A, B) just

chapter 9: tqbf 2

needs to check that B is the configuration that comes after A. Since
we know that there is a polynomial sized circuit C such that C(x, A)

computes the configuration that follows from A, we can construct a
circuit F of size poly(n) such that

F (A, B, x) =

1 if C(A, x) = B,

0 else.

Just like in the proof that SAT is NP-complete, we can generate a
polynomial sized formula F(y) such that ∃yF(y) is true if and only if
F (A, B, x) = 1.

For the general case, note that there is a path of length at most 2i

from A to B if and only if there is some vertex C in the graph such
that there is a path of length 2i−1 from A to C and a path of length
2i−1 from C to A. Thus we can define

ψi(A, B) = ∃C, ψi−1(A, C) ∧ ψi−1(C, B).

However, this doubles the size of the formula ψi−1 (which means
that after t steps we will be trying to generate a formula that is expo-
nentially big and this is impossible in polynomial time).

Indeed, we haven’t yet used the ∀ quantifiers. Let us use the same
idea as before to define the smaller formula:

ψi(A, B)

= ∃C, ∀X, ∀Y, (X = A ∧Y = C) ∨ (X = C ∧Y = B)⇒ ψi−1(X, Y)

= ∃C, ∀X, ∀Y, (¬(X = A ∧Y = C) ∧ ¬(X = C ∧Y = B)) ∨ ψi−1(X, Y)

The end result is a formula of size poly(n, t) that checks for a path
of length 2t in the graph as required.

Lower Bounds on SAT

The material in this section was not discussed in class. We include it
here as you might find it interesting. Although we cannot say any-
thing non-trivial about the running time required to compute SAT,
or the space required to compute SAT, we can show that SAT cannot
have an algorithm that is both linear time and log space:

Theorem 3. There is no turing machine computing SAT in O(n) time and
O(log n) space.

In order to prove the theorem, we shall rely on two facts that we
have convinced ourselves of before:

chapter 9: tqbf 3

Theorem 4. If t(n) ≥ Ω(n), any f ∈ NTIME(t(n)) can be reduced in
in logarithmic space and time O(t(n) log(t(n))) to computing SAT on a
formula of size O(t(n) log t(n)).

Earlier in the course we proved that the reduction is in polynomial
time, but in fact it is even in L. (Think about this!). The reduction
works by first computing a circuit that simulates the computation
of a machine, and then computing the formula that simulates the
execution of the circuit.

Another theorem we shall appeal to is the deterministic time hier-
archy theorem:

Theorem 5 (Time Hierarchy). If r, t are time-constructible functions
satisfying r(n) log r(n) = o(t(n)), then DTIME(r(n)) (DTIME(t(n)).

Proof of Theorem 3: Assume for the purpose of contradiction that
there is a turing machine computing SAT in O(n) time and O(log n)
space. The idea is to use the purported SAT algorithm to get an un-
reasonable speed up of computations. Suppose for the sake of con-
tradiction that SAT can be computed in linear time and logarithmic
space.

Suppose that f ∈ DTIME(n2) via the machine M f and f /∈
DTIME(npolylog(n)). Such an f exists by Theorem 5. We shall show
how to compute f in time O(npolylog(n)), giving us the desired con-
tradiction.

By appealing to Theorem 4, consider the machine M that runs as
follows on input x ∈ {0, 1}n:

1. Generate the formula φ of size n2 log n that simulates the machine
M f (x), using Theorem 4.

2. Check whether M f (x) accepts by computing SAT(φ) in time
O(n2 log n) and space O(log(n2 log n)) = O(log n).

M is not our final simulation. M computes f in time O(n2 log n)
and space O(log n).

Consider the configuration graph of M. This graph accepts if and
only if there is an accepting path of length t = O(n2 log n), which
happens if and only if there exist

√
t intermediate configurations

C1, . . . , C√t, such that there is a path of length
√

t between intermedi-
ate configurations. In other words, f (x) = 1 if and only if

∃C1, . . . , C√t, ∀i, Ci follows from Ci−1 in
√

t steps.

Each configuration takes only O(log n) bits to write down. So once
we guess all of these

√
t configurations, the problem of determining

whether they determine an accepting of path of length t can be en-
coded using a SAT formula of size O(

√
t · log n · polylog(t, n)) (by The-

orem 4), so it can be solved in deterministic time O(
√

t · polylog(t, n)).

chapter 9: tqbf 4

Thus we can compute a formula ψ of size O(
√

t · polylog(t, n)) such
that f (x) = 1 if and only if

∃C1, . . . , C√t, ∃z, ψ(C1, . . . , C√t, z).

The above is an instance of SAT and can then be solved determin-
istically in time O(

√
t · polylog(n, t)). Thus, overall, we get a simula-

tion in deterministic time O(
√

t · polylog(t, n)) = O(npolylog(n)) =

o(n2), contradicting the deterministic time hierarchy theorem.

