Lecture 13: Randomization Anup Rao February 16, 2023

Randomized Algorithms

We shall give a few examples of problems where randomness helps to give very effective solutions.

Matrix Product Checking

Suppose we are given three $n \times n$ matrices A, B, C, and want to check whether $A \cdot B = C$. One way to do this is to just multiply the matrices, which will take much more than n^2 time. Here we give a randomized algorithm that takes only $O(n^2)$ time.

Input: $3 \ n \times n$ -matrices A, B, CResult: Whether or not $A \cdot B = C$. Sample an n coordiante column vector $r \in \{0, 1\}^{0,1}$ uniformly at random ; if A(B(r)) = C(r) then | Output "Equal"; else | Output "Not equal"; end

Algorithm 1: Algorithm for Multiplication Checking

The algorithm only takes $O(n^2)$ time. For the analysis, observe that if AB = C, then the algorithm outputs "Equal" with probability 1. If $AB \neq C$, the algorithm outputs "Equal" only when $ABr = Cr \Rightarrow (AB - C)r = 0$. We shall show that this happens with probability at most 1/2.

Let D = AB - C. Then $D \neq 0$, so let d_{ij} be a non-zero entry of D. Then we have that the *i*'th coordinate $(Dr)_i = \sum_k d_{ik} \cdot r_k$. This coordinate is 0 exactly when $r_j = (1/d_{ij}) \sum_{k \neq j} d_{ik} r_k$. Define the random variable $A = (1/d_{ij}) \sum_{k \neq j} d_{ik} r_k$, and observe

$$\Pr\left[r_j = (1/d_{ij})\sum_{k \neq j} d_{ik}r_k\right]$$

=
$$\Pr\left[r_j = A\right]$$

=
$$\sum_a \Pr\left[A = a\right] \cdot \Pr\left[r_j = a|A = a\right]$$

$$\leq (1/2) \cdot \sum_a \Pr\left[A = a\right]$$

=
$$1/2.$$

Exercise: Modify the above algorithm so that the probability the algorithm outputs "Equal" when $AB \neq C$ is at most 1/4.

2-SAT

A two SAT formula is a CNF formula where each clause has exactly 2-variables. Here we give a randomized algorithm that can find a satisfying assignment to such a formula, if one exists.

Input: A two sat formula ϕ
Result: A satisfying assignment for ϕ if one exists
Set $a = 0$ to be the <i>n</i> -bit all 0 string;
for $i = 1, 2,, 100n^2$ do
if $\phi(a) = 1$ then
if $\phi(a) = 1$ then Output a ;
end
Let a_i, a_j be the variables of an arbitrary unsatisfied clause.
Pick one of them at random and flip its value ;
end
Output "Formula is not satisfiable";
*

Algorithm 2: Algorithm for 2 SAT

If ϕ is not satisfiable, then clearly the algorithm has a correct output. Now suppose ϕ is satisfiable and b is a satisfying assignment, so $\phi(b) = 1$. We claim that the algorithm will find b (or some other satisfying assignment) within $100n^2$ steps with high probability. To understand the algorithm, let us keep track of the number of coordinates that a, b disagree in during the run of the algorithm. Observe that during each run of the for loop, the algorithm picks a clause that is unsatisfied under a. Since b satisfies this clause, a, b must disagree in one of the two variables of this clause. Thus the algorithm reduces the distance from a to b with probability 1/2.

Thus we can think of the algorithm as doing a random walk on the

line. There are n + 1 points on the line, and at each step, if the algorithm is at position i it moves to position i + 1 with probability 1/2 and to position i - 1 with probability at least 1/2. We are interested in the expected time before the algorithm hits position 0. Let

 $t_i = \mathbb{E} [\#$ steps before hitting position 0 from position i].

Then we have the following equations:

$$t_{0} = 0,$$

$$t_{i} = (1/2)t_{i+1} + (1/2)t_{i-1} + 1 \qquad i \neq 0, n$$

$$\Rightarrow t_{i} - t_{i-1} = t_{i+1} - t_{i} + 2$$

$$t_{n} = 1 + t_{n-1}.$$

Thus we can compute:

$$t_n = (t_n - t_{n-1}) + (t_{n-1} - t_{n-2}) + \dots + (t_1 - t_0)$$

= 1 + 3 + \dots
= $\sum_{j=1}^n (2j-1) = 2\left(\sum_{j=1}^n j\right) - n = n(n+1) - n = n^2$

Thus the expected time for the algorithm to find a satisfying assignment is n^2 .

Lemma 1.

 $\Pr[algorithm \text{ does not find satisfying assignment in } 100n^2 \text{ steps}] < 1/100.$

Proof We have that

$$n^2 \ge \mathbb{E} [$$
steps to find assignment $]$
= $\sum_{s=0}^{\infty} s \cdot \Pr[s \text{ steps to find assignment}]$
 $\ge \Pr[\text{at least } 100n^2 \text{ steps are taken}] \cdot 100n^2.$

Therefore,

$$\Pr[\text{more than } 100n^2 \text{ steps are taken}] < 1/100.$$

Fingerprinting

Suppose Alice has an *n*-bit string x and Bob has an *n*-bit string y, and they want to check that they are equal. Naively this takes n

bits of communication between them. We can do much better using randomization.

Alice samples a random prime number p from the set of primes that are less than $cn \ln n$, for some constant c that we shall pick later. She then sends p and $x \mod p$ to Bob. Bob checks that $x \mod p$ is equal to $y \mod p$. Thus they only need to communicate $O(\log n)$ bits in this process.

If x = y, this will always produce the right outcome. We shall argue that if $x \neq y$, the probability that they make a mistake is going to be very small. To do this, we need a theorem:

Theorem 2 (Prime number theorem). Let $\pi(a)$ denote the number of primes that are at most *a*. Then $\lim_{a\to\infty} \frac{\pi(a)}{a/\ln a} = 1$.

When $x \neq y$, the above process fails only when p divides x - y. Since $|x - y| \leq 2^n$, x - y can have at most n prime factors. On the other hand, by the prime number theorem, the number of primes of size up to $cn \ln n$ is at least $cn \ln n / (\ln(cn \ln n)) = \Omega(cn)$. Thus the probability that the prime Alice picks divides x - y is at most O(1/c).