
Lecture 15: Identity testing and the Permanent
Anup Rao

February 28, 2023

Last time, we saw how to prove the Schwartz-Zippel lemma, which
allows us to give a simple randomized test to check whether or not
a polynomial is 0: just evaluate the polynomial on a random point.
This idea has many interesting consequences. Today, we begin by
exploring some consequences for arithmetic circuits.

An arithmetic circuit is the same as a boolean circuit, except that
the gates are replaced by arithmetic operations like + and ×. For-
mally, the circuit is a directed acyclic graph. Every vertex in the
graph corresponds to a variable xi, or + or ×, or the constants 0 or
1. The gates that correspond to + or × have exactly two edges com-
ing into them, and all other gates have no edges coming into them.
The circuit is said to compute a polynomial f (x1, . . . , xn) if there is
some gate in the circuit whose output corresponds to the polynomial
f . Suppose we are given a circuit computing f and another circuit
computing g, both of size at most s. How can we test whether or not
f = g?

The Schwartz-Zippel lemma suggests a simple algorithm: let S be
a large set of numbers, and pick x1, . . . , xn uniformly at random from
S. Evaluate f (x1, . . . , xn) and g(x1, . . . , xn). If the two polynomials
are equal, these evaluations will be equal. If the two are different, we
should expect to be able to use the lemma to argue that the evalua-
tions will be different with high probability.

There are a couple of complications with getting this to work.
First, to use the lemma, we need to bound the degrees of f , g. If
f , g contain at most s multiplication gates, we see by induction that
the degree of f , g can be at most 2s, since each multiplication can
potentially double the degree. So, to use the Schwartz-Zippel lemma,
we need to use a set S with |S| � 2s. This is not that big a problem:
we can use the integers up to 22s. However, then we face another
issue: the value of f (x1, . . . , xn) could be as large as 2(2s)s

. Thats
because every multiplication gate could square the magnitude of the
integers we are working with. Eventually, the integers will become so
big that we need exponential space just to write them down, so the
complexity of the algorithm becomes exponential in s.

To rescue this algorithm, we use arithmetic modulo a prime num-
ber. We need the following fact:

Fact 1. Let t(N) denote the number of primes in {1, 2, . . . , N}. Then
limN→∞

t(N)
N/ ln N = 1.

lecture 15: identity testing and the permanent 2

Our final algorithm is as follows. Pick S = {1, 2, . . . , 22s} p
to be a random prime in the set {1, 2, . . . , 2s2}. Then pick the ele-
ments x1, . . . , xn from S at random and check that f (x1, . . . , xn) =

g(x1, . . . , xn) mod p.
If k distinct primes divide f (x1, . . . , xn), then we must have 2(2s)s ≥

f (x1, . . . , xn) ≥ 2k, so k ≤ 2s. Since the number of primes in our set is
Ω(2s2

/s2), we get that the probability that the random prime divides
f (x1, . . . , xn) is at most

O((2s)s/(2s2
/s2)) = O(2s log(2s)−2s2

/s2)� 1/10.

Determinant vs Permanent

Recall our definition of the determinant:

det(M) = ∑
π∈Sn

sign(π)
n

∏
i=1

Mi,π(i).

The determinant can be computed in time O(n3) using Gaussian The determinant measures the volume
of the parallelopiped generated by the
rows of the matrix M.

elimination. Faster algorithms are known as well. In particular, there
is an algorithm to compute it using a circuit of polynomial size and
depth O(log2(n)).

The permanent has a very similar formula:

perm(M) = ∑
π ∈ Sn

n

∏
i=1

Miπ(i).

Surprisingly, the permanent seems much harder to compute. Indeed, When the matrix is the adjacency ma-
trix of a directed graph, the permanent
counts the number of cycle covers of the
graph. A cycle cover of the graph is a
collection of disjoint cycles that cover all
the vertices of the graph. Try to prove
this!

there is a good reason for this. One can reduce 3SAT to computing
the permanent!

Let us define the complexity class #P as follows. We say that a
function f is in #P if and only if there is a polynomial time turing
machine M and a polynomial p such that

f (x) = |{y ∈ {0, 1}p(|x|) : M(x, y) = 1}|.

Thus if one thinks of M as the verifier to an NP problem, f counts
the number of witnesses to x. Examples of problems in #P include
#SAT, where #SAT(φ) is the number of satisfying assignments to the
boolean formulat φ.

We shall not prove the following theorem, but it shows that an
efficient algorithm for the permanent would prove that P = NP.

Theorem 2. Every f in #P can be reduced to #SAT(φ) in polynomial time.
Every f in #P can be reduced to perm in polynomial time.

	Determinant vs Permanent

