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In this lecture, we finally prove something that I mentioned in
my very first lecture: it is possible to balance every arithmetic circuit.

Homogenization

First, we need the concept of a homogenous polynomial/circuit.
A polynomial is homogenous if all of its monomials have the same
degree. An arithmetic circuit is homogenous if every gate computes a
homogenous polynomial. Given a polynomial f of degree d, we write
fi to denote its i’th homogenous part. So, f = f0 + . . . + fd.

A useful fact is that every circuit can be made homogenous in the
following sense:

Theorem 1. If f is a degree d polynomial that can be computed by a circuit
of size s, then f0, . . . , fd can all be computed by a homogenous arithmetic
circuit of size O(sd2).

Proof The idea of the proof is to compute g0, . . . , gd for every gate
g in the circuit of size s. If g = u + v, then gi = ui + vi, so the
homogenous parts of g can be computed from the homogenous parts
of u, v. If g = u · v, then gi = u0 · vi + u1 · vi−1 + . . . + ui · vi, so
once again the homogenous parts of g can be computed. All of these
operations may increase the size of the circuit by a factor of O(d2).

The key claim

The key claim we shall make is the following:

Theorem 2. Suppose f (X1, . . . , Xn) is a degree d homogenous polynomial
computed by a homogenous arithmetic circuit of size s. Then we can express

f =
s

∑
i=1

uivi,

where for every i, ui and vi both have degree at least d/3 and at most 2d/3,
ui occurs as a gate in the original circuit, and vi can be computed by the
same circuit after replacing some of the gates with the constants 0 or 1.
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Balancing

Theorem 2 is extremely powerful. In particular, it implies that one
can compute f using a circuit of depth at most O((log s)(log d)). To
see this, generate a circuit of depth O(log s) that computes f from
inputs ui, vi as above. Then, since each of ui, vi can be computed by
circuits of size s, we can recursively apply the Theorem to these poly-
nomials and continue. In each step, the degree of the polynomials we
are working with drops by a constant factor, so there can be at most
O(log d) steps.

Even if f is not homogenous, we can use Theorem 1 to make a
homogenous circuit computing the homogenous parts of f in size
O(sd2). Then, applying Theorem 2, we obtain a circuit of depth
O((log sd2) + log d) ≤ O((log s + log d) log d) computing the homoge-
nous parts of f . We can then sum up these parts adding another
O(log d) to the depth to recover f . As a consequence, we obtain:

Theorem 3. If f is a polynomial of degree d that can be computed using an
arithmetic circuit of size s, then f can be computed by an arithmetic circuit
of depth O((log s + log d) log d).

Proving the theorem

Finally, let us turn to proving the theorem. The given circuit
is assumed to be homogenous. In fact, it is no loss of generality to
assume that every gate of the circuit computes a polynomial of de-
gree at most d. This is because if the circuit contains a + gate that
computes the polynomial 0, then we can eliminate that gate. Once
all such gates have been eliminated, we see that every gate computes
a polynomial whose degree is larger than the degrees of its inputs.
Thus, any gate computing a polynomial of degree larger than d can-
not be connected to the output gate, and it can be dropped.

Next we run a process similar to what we have seen when found
a way to balance Boolean formulas. Let a1, a2, . . . be a sequence of
gates, where a1 the output gate, and given ai, ai+1 is the gate that
feeds into ai of larger degree (breaking ties arbitrarily). Since the
product of two gates adds the degrees, the degree of the polynomial
computed by ai+1 must be at least 1/2 of the degree of ai. Let ai+1 be
the first gate in this sequence with

d/3 ≤ deg(ai+1) ≤ 2d/3.

By construction, we must have ai = ai+1 · b, and the degree of ai must
be greater than 2d/3. Now, imagine replacing the gate ai with a new
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variable Y. Let g(X1, . . . , Xn, Y) denote the output of the circuit after
making this change, so f (X1, . . . , Xn) = g(X1, . . . , Xn, ai), where here
ai denotes the polynomial computed by the gate ai.

We claim:

Claim 4. If a gate r in the circuit computing g computes a polynomial
containing the monomial Y · h, then the degree of r in the circuit for f must
be deg(ai) + deg(h).

The claim holds by induction. It is true for the gate ai, and given
that the claim holds for the inputs of r, it must hold for r, since we
have eliminated all gates of the circuit for f that compute the 0 poly-
nomial.

Next, we claim that the degree of Y in g is at most 1. Indeed, if
the circuit ever multiplies a polynomial containing Y with another
polynomial containing Y, then the degree of this gate in the original
circuit has to be at least 4d/3, but there are no such gates, since we
got rid of them in the first step of the proof. Thus, we must have

g = h · Y + q,

for some polynomials h(X1, . . . , Xn), q(X1, . . . , Xn).
Now, set u1 = ai+1, v1 = h · b. Then we have

f = u1 · v1 + q.

v1 can be computed by considering the path from b to the output
gate, replacing the gate ai by 1, and replacing every polynomial that
is added to this path by 0.

Moreover, q can be computed by substituting Y = 0 in the cir-
cuit computing g. Thus, q must be homogenous and have the same
degree as f (or be 0). Since q can be computed by a circuit of size at
most s − 1, the proof is completed by induction.
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