
Lecture 2: Communication complexity and Circuits
Anup Rao

January 5, 2023

Communication Complexity

Communication complexity has been a very useful model
for proving lower bounds. In this model, there are two parties Alice
and Bob. Alice is given an n-bit string x, and Bob is given an n-bit
string y. In order to compute a function f (x, y), they exchange mes-
sages about their inputs.

So, Alice sends Bob a message m1(x). Bob responds with a mes-
sage m2(y, m1). In this way, they exchange messages until someone
knows the value of f . The communication complexity of f is the min-
imum number of bits that must be communicated before the players
know the value of f .

To formally define a communication protocol, we use a protocol
tree. See Figure 1. This is a rooted binary tree where every node is
associated with one of the players, and associated with a boolean
function. To execute the protocol, Alice and Bob start at the root
of the tree. If the root is owen by Alice, she evaluates the function
associated with the root on her input and sends the result to Bob.
The result of the evaluation determines which of the two children
the protocol moves to next. In this way, the players reach a leaf of the
tree, which is labeled with the output of the computation. The cost of
the tree is simply its depth, which determines the maximum number
of bits that may be exchanged during any execution of the protocol.

The main drawback of this model is that it is not very practical:
just because a function has an efficient communication protocol
doesn’t mean that we can compute it efficiently in practice. For ex-
ample, in this model, one can compute any boolean function of x
with 1 bit of communication. However most functions cannot be
computed efficiently in practice.

The main advantage of this model is that almost every other com-
putational model seems to involve communication. So lower bounds
on the communication complexity of functions are extremely useful
to prove lower bounds on the complexity of computing functions in
other models of computation.



lecture 2: communication complexity and circuits 2

fa(x) = 0

b

c

a

fb(x) = 1

fc(y) = 1

0

owned by Bob

owned by Alice Figure 1: An execution of a protocol.

X1 X2 X3 X4 X5 X6

∧

∨

∧

∧

∨

∨

¬

∨
Figure 2: An example of a boolean
circuit.

Boolean Circuits

A boolean circuit computing a function f : {0, 1}n → {0, 1} is a
directed acyclic graph with the following properties. Every vertex
(also called a gate) has at most 2 edges coming in to it. If there are 0
edges coming in, then the vertex is labeled with an input variable xi,
or the constants 0 or 1. Otherwise, the vertex is labeled with one of
the boolean operators ∧,∨,¬, and computes the specified operation
on the bits that come in along the incoming edges. One of the gates
in the circuit is designated the output node. This is the node whose
value is the output of the circuit.

When every gate has out-degree at most 1, the circuit is called a
formula. In the case of a formula, the graph of the circuit looks like a
tree after edges have been converted into undirected edges.

A circuit can also be viewed as a program in a simple program-
ming language, where every line is an assignment. For example, the



lecture 2: communication complexity and circuits 3

circuit in Figure 2 is equivalent to this program:

1. y1 = x1 ∧ x2

2. y2 = x3 ∨ x4

3. y3 = ¬x5

4. y4 = x5 ∧ x6

5. y5 = y1 ∨ y2

6. y6 = x5 ∨ y4

7. y7 = y5 ∧ y3

8. y8 = y7 ∨ y6

There are two major quantities we can measure to capture the
complexity of a circuit:

Definition 1. The size of the circuit is the number of gates in the circuit.

Since every gate in the circuit has at most 2 incoming edges, the
size of the circuit is proportional to the number of edges in the graph
that defines the circuit:

Fact 2. The size of the circuit is the same as the number of edges in the
circuit, up to a factor of 2.

We can also measure the depth of the circuit:

Definition 3. The depth of the circuit is the length of the longest input to
output path.

The depth complexity is a measure of how much parallel time it
takes to compute the function.

Just like branching programs, boolean circuits can complete every
function:

Theorem 4. Every function f : {0, 1}n → {0, 1} can be computed by a
circuit of size at most O(2n).

Proof We construct the circuit recursively. When n = 1, there
is clearly a constant sized circuit that computes f , since f must be
either a constant, x1 or ¬x1.

For n > 1, let f0 denote the function on n− 1 bits given by f0(x) =
f (x, 0), and f1(x) = f (x, 1). Then by induction we can compute f0, f1

recursively, and combine them using the value of the last bit to obtain
f , as in Figure 3. When xn = 1, the circuit outputs f1(x1, . . . , xn−1),
and when xn = 0, the circuit outputs f0(x1, . . . , xn−1).



lecture 2: communication complexity and circuits 4

Xn

∧ ∧

∨

¬f1 f0

f
Figure 3: Recursive construction of a
circuit for f .

If Sn is the size of the resulting circuit when the underlying func-
tion takes an n bit input, we have proved that

Sn ≤ 2Sn−1 + 5.

Expanding this recurrence, and using the fact that S1 ≤ 5, we get
that

Sn ≤
n

∑
i=0

2i5 = 5 · (2n+1 − 1) < 10 · 2n,

where here we used the formula for computing the sum of a geomet-
ric series.

The above theorem is not the best result we know about this sub-
ject. In fact, we know:

Theorem 5. Every function f : {0, 1}n → {0, 1} can be computed by a
circuit of size at most O(2n/n).

Proof We will use a recursive construction, but stop the recur-
sion at a certain point. For a parameter t, we start by computing
every function of the first t bits of the input. There are 22t

such func-
tions, and each one can be computed by a circuit of size O(2t) us-
ing Theorem 4, so we can compute every function using at most
O(2t · 22t

) ≤ O(2t+2t
) gates.

To compute the function f , we use the recursive construction de-
fined in the proof of Theorem 4 for n− t steps. After n− t steps, we
have put down O(2n−t) gates, and need to compute functions on the
first t bits, but since we have already computed every such function,
we are done. The size of the final circuit is thus O

(
2t+2t

+ 2n−t
)

.
Setting t = log n− 1, we get a circuit of size

O(2log n−1+n/2 + 2n−log n+1) ≤ O(2n/n).


	Communication Complexity
	Boolean Circuits

