
Lecture 3: Counting arguments, Turing machines
Anup Rao

January 10, 2023

Lower bounds—Counting arguments

We have shown that every function f : {0, 1}n → {0, 1} can be
computed by a circuit of size at most O(2n/n), and on the other hand
we show that for n large enough there is a function that cannot be
computed by a circuit of size less than 2n/(3n). The lower bound we
prove here was first shown by Shanon. He introduced a really simple
but powerful technique to prove it, called a counting argument.

The basic idea is to count the number of circuits of size s, and
count the number of functions that depend on n input bits. If the
number of functions is larger, then there must be a function that
cannot be computed by a circuit of size s. In order to get results, we
will not actually have to be too precise about counting the number of
circuits of size s, it will be enough to get a reasonable upper-bound.

Theorem 1. For every large enough n, there is a function f : {0, 1}n →
{0, 1} that cannot be computed by a circuit of size 2n/3n.

Proof We shall count the total number of circuits of size s, where
s > n. To define a circuit of size s, we need to pick the logical op-
erator for each (non-input) gate, and specify where each of its two
inputs come from. There are at most 3 choices for the logical oper-
ation, and at most s choices for where each input comes from. So
the number of choices for each non-input gate is at most 3s2. The
number of choices for an input gate is at most n < 3s2. So, the total
number of choices for each gate is at most 3s2 + n, and the number of
possible circuits of size s is at most

(3s2 + n)s ≤ (4s2)s = 2s log(4s2) < 23s log s,

when n > 4.
This means that the total number of circuits of size 2n/3n is less

than 23· 2n
3n ·n = 22n

. On the other hand, the number of functions
f : {0, 1}n → {0, 1} is exactly 22n

. Thus, not all these functions can be
computed by a circuit of size 2n/(3n).

Indeed, the above argument shows that the fraction of functions
f : {0, 1}n → {0, 1} that can be computed by a circuit of size 2n/4n is

at most 2
3
4 ·2

n

22n = 1
22n−2 , which is extremely small.

Similar arguments can be used to show that not every function has
an efficient branching program (as you will do on your homework).



lecture 3: counting arguments, turing machines 2

Not every function has an efficient communication protocol

Let us see another example of how counting arguments can be used
to prove lower bounds.

Recall that a communication protocol for computing a function
f (x, y) specifies a way for Alice and Bob to communicate with each
other in order to compute f . If x, y are n-bit strings, the number of
such functions f is 222n

: indeed there are 22n inputs x, y, and for each
choice of input, there are 2 choices for the output of the function.

The trivial protocol for computing an arbitrary function is to have
Alice send her entire input to Bob. This takes n bits of communica-
tion. Here we show:

Theorem 2. There is a function f that requires at least n− 2 bits of com-
munication.

Proof As with circuits, we do the proof by counting. To count the
number of communication protocols, observe that for every prefix of
messages communicated so far, there are 2 choices for who should
send the next bit, there are 22n

choices for the function to use to send
that next bit.

If the communication complexity is at most t bits, the number of
strings of length at most t is at most 2t+1, so the number of protocols

is thus
(

2 · 22n
)2t+1

= 2(2
n+1)2t+1 ≤ 22n+t+2

. So if t < n− 2, the number
of protocols is strictly less than the number of functions f .

Turing Machines

A Turing Machine is essentially a program written in a par-
ticular programming language. The program has access to three
arrays and three pointers:

• x which is accessed using the pointer i. x is an array that can be
read but not written into.

• y which is accessed using the pointer j. y can be read and written
into.

• z which is accessed using the pointer k. z can only be written into.

The machine is described by its code. Each line of code reads the
bits xi, yj, and based on those values, (possibly) writes new bits into
yj, zk, and then possibly after incrementing or decrementing i, j, k,
jumps to a different line of code or stops computing. Initially, the



lecture 3: counting arguments, turing machines 3

input is written in x and the goal is for the output to be written in
z at the end. i, j, k are all set to 1 to begin with. The arrays all have
a special symbol to denote the beginning of the tape and a special
symbol to denote the blank parts of the tape.

For example here is a program that copies the input to the output
using a single line:

1. If xi is empty, then HALT. Else set zk = xi and increment each of
i, k. Jump to step 1.

Here is another that outputs the input bits which are in odd loca-
tions:

1. If xi is empty, then HALT. Else set zk = xi, increment each of i, k
and jump to step 2.

2. If xi is empty, then HALT. Else increment each of i, k and jump to
step 1.

The exact details of this model are not important. The main reason
we introduce it is to have a fixed model of computation in mind. For
example, it is easy to show that adding more tapes or increasing the
alphabet size does not change the model significantly, as we shall
discuss further next time.

Resources of Turing Machines

Once we have fixed the model, we can start talking about the com-
plexity of computing a particular function f : {0, 1}∗ → {0, 1}. Fix
a turing machine M that computes a function f . There are two main
things that we can measure:

• Time. We can measure how many steps the turing machine takes
in order to halt. Formally, the machine has running time T(n) if on
every input of length n, it halts within T(n) steps.

• Space. We can measure the maximum value of j during the run of
the turing machine. We say the space is S(n) if on every input of
length n, j never exceeds S(n).

The following fact holds because in each step j can be incremented
by at most 1:

Fact 3. The space used by a machine is at most the time it takes for the
machine to run.


	Lower bounds—Counting arguments
	Not every function has an efficient communication protocol
	Turing Machines
	Resources of Turing Machines

