
Lecture 4: Diagonalization
Anup Rao

January 12, 2023

Last time, we discussed the fact that there are functions that
require large circuits. Today, we use a similar strategy to argue that
there are functions that cannot be computed by Turing machines.
But first, let us discuss the robustness of the definition of Turing
Machines.

Robustness of the model: Extended Church-Turing Thesis

The reason Turing machines are so important is because of
the Extended Church-Turing Thesis. The thesis says that every efficient
computational process can be simulated using an efficient Turing
machine as formalized above. Here we say that a Turing machine is The original (non-extended) thesis

made a much tamer claim: that any
computation that can be carried out by
a human can be carried out by a Turing
machine.

efficient if it carries out the computation in polynomial time.
The Church-Turing Thesis is not a mathematical claim, but a wishy

washy philosophical claim about the nature of the universe. As far
as we know so far, it is a sound one. In particular if one changed
the above model slightly (say by providing 10 arrays to the machine
instead of just 3, or by allowing it to run in parallel), then one can
simulate any program in the new model using a program in the
model we have chosen.

Claim 1. A program written using symbols from a larger alphabet Γ that
runs in time T(n) can be simulated by a machine using the binary alphabet
in time O(log |Γ| · T(n)).

Sketch of Proof We encode every element of the old alphabet in
binary. This requires O(log |Γ|) bits to encode each alphabet sym-
bol. Each step of the original machine can then be simulated using
O(log |Γ|) steps of the new machine.

Claim 2. A program written for an L-tape machine that runs in time T(n)
can be simulated by a program for a 3-tape machine in time O(L · T(n)2).

Sketch of Proof The idea is to encode the contents of all the new
work arrays into a single work tape. To do this, we can use the first
L locations on the work tape to store the first bit from each of the L
arrays, then the next L locations to store the second bit from each of
the L arrays, and so on. To encode the location of the pointers, we

lecture 4: diagonalization 2

increase the size of the alphabet so that exactly one symbol from each
tape is colored red. This encodes the fact that the pointer points to
this symbol of the tape. The actual pointer in the new Turing ma-
chine will then do a big left to right sweep of the array to simulate a
single operation of the old machine.

The following theorem should not come as a surprise to most of
you. It says that there is a machine that can compile and run the code
of any other machine efficiently:

Theorem 3. There is a turing machine M such that given the code of
any Turing machine α and an input x as input to M, if α takes T steps to
compute an output for x, then M computes the same output in O(CT log T)
steps, where here C is a number that depends only on α and not on x.

We shall say that a machine runs in time t(n) if for every input
x, the machine halts after t(|x|) steps (here |x| is the length of the
string x). Similarly, we can measure the space complexity of the ma-
chine. The crucial point is that small changes to the model of Turing
machines does not affect the time/space complexity of computing
a particular function in a big way. Thus it makes sense to talk about
the running time for computing a function f , and this measure is not
really model dependent.

Finally we have the following theorem relating Turing machines to
circuits:

Theorem 4. If M is a Turing machine that halts within T steps on inputs
of legnth n, there is a Boolean circuit of size O(T log T) that simulates the
execution of M on inputs of lenth n.

To prove the theorem, you construct the Boolean circuit by build-
ing layers. Each layer simulates a single step of execution of the Tur-
ing machine. The circuit maintains a collection of gates that encode
the values of x, y, z, the locations of the pointers, and the line of code
that is about to be executed. Then, it uses a small number of gates to
compute the updated value of all of these variables after one step of
the Turing machine. Putting together all these layers gives the final
circuit. In this class we will not discuss the details of this simulation.

Diagonalization

We used counting arguments to show that there are functions
that cannot be computed by circuits of size o(2n/n). If we were to
try and use the same approach to show that there are functions f :

lecture 4: diagonalization 3

{0, 1}∗ → {0, 1} not computable Turing machines we would first try
to show that:

turing machines � # functions f .

This approach doesn’t seem like it makes any sense at first, because
both numbers here are infinite. Luckily, mathematicians have long
studied how to compare the sizes of infinite sets.

Recall the definitions of the following sets:

N = {1, 2, 3, . . . } the natural numbers

Z = {. . . ,−2,−1, 0, 1, 2, . . . } the integers

2N = {A ⊆N} the set of sets of natural numbers

Q = {i/j : i, j ∈ Z, j 6= 0} the rational numbers

R =

{
lim
i→∞

xi : x1, x2, . . . ∈ Q is a convergent sequence
}

the real numbers

To compare the sizes of these sets, we use the concept of countabil-
ity. A function φ : N → S is said to be surjective if for every s ∈ S,
there is an i ∈N such that φ(i) = s.

Definition 5. A set S is countable, if there is a surjective function φ :
N→ S.

Equivalently, S is countable if there is a list φ(1), φ(2), . . . of ele-
ments from S, such that every element of S shows up at least once on
the list.

Let us try to understand which of the sets we have discussed are
countable.

Fact 6. N is countable.

Proof Consider the list 1, 2, 3, This obviously contains every
element of N.

Fact 7. Z is countable.

Proof Consider the list 0, 1,−1, 2,−2, 3,−3, This obviously
contains every element of Z.

Fact 8. Z×Z = {(i, j) : i, j ∈ Z} is countable.

Proof Consider the list

(0, 0), (1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0),

(−1,−1), (0,−1), (1,−1), (2,−1), . . . ,

lecture 4: diagonalization 4

(0,0)

Figure 1: Enumeration of Z×Z.

shown in Figure 1. This list contains every element of Z×Z. Indeed,
we are enumerating all pairs (i, j) where the max{|i|, |j|} is 0, then
all pairs where max{|i|, |j|} is 1 and so on. Clearly, every pair occurs
somewhere in the list.

Fact 9. Q is countable.

Proof Since Z×Z is countable, just take the list of all pairs from
Z×Z, and discard an entry if j = 0 and replace it with i/j if j 6= 0.
This gives an enumeration of Q.

The interesting thing is that some sets can be shown to be un-
countable, using the technique of diagonalization.

Fact 10. 2N is not countable.

Proof Suppose there was some list of sets A1, A2, Then con-
sider the set

T = {i : i ∈N, i /∈ Ai}.

We claim that T is not in the list. Indeed, suppose T = Aj for some j.
Then if j ∈ Aj, j /∈ T by our construction, and if j /∈ Aj, then j ∈ T. In
either case, T 6= Aj.

The proof we just used is called a proof by diagonalization, be- It was discovered by Cantor

cause we can think of doing it using the picture described in Figure
2. We encode each set in our list using a binary string. The set T
we picked is obtained by taking the set that is obtained by choosing
something that disagrees with the diagonal in the picture.

lecture 4: diagonalization 5

A1

A2

A3

A4

A5

1 2 3 4 5

1

0

1

1

1

0

0

0

0

1

1

1

1

0

1

0

0

1

0

0

0

0

1

0

0

A1 = {1,2,…}

A1 = {3,…}

A3 = {1,3,4,5,…}

A4 = {1,…}

A5 = {1,2,3,…}

T = {2,4,5,…} T 0 1 0 1 1

Figure 2: Diagonalization of a list of
sets.

A very similar idea can be used to show that the real numbers are
not countable:

Fact 11. R is not countable.

Proof Every real number can be thought of as a number with a
potentially infinite decimal expansion.

Suppose r1, r2, . . . is an enumeration of the real numbers. Consider
the real number t = 0.d1d2 . . . , where the i’th digit di is chosen so that
di is not the same as the i’th digit of ri. Then t is a real number that
does not occur anywhere in the list of ri’s, since it disagrees with the
i’th number in the i’th digit after 0.

A very similar idea gives an impossibility result for Turing Ma-
chines, we shall see the proof next time.

	Robustness of the model: Extended Church-Turing Thesis
	Diagonalization

