
Lecture 5: Diagonalization and the Incompleteness
Theorem
Anup Rao

January 17, 2023

Last time, we discussed the fact that there are functions that
require large circuits. Today, we use a similar strategy to argue that
there are functions that cannot be computed by Turing machines. A
very similar idea gives an impossibility result for Turing Machines.

Theorem 1. There is a function that is not computed by any Turing Ma-
chine.

Before we see the the simple proof, let us point out that this is
philosophically a very powerful fact. A consequence of it is that
assuming the Church-Turing Thesis is true, there are some ways to
manipulate information that can never occur in the universe. It seems
hard to imagine a physical process that violates the Church-Turing
thesis, and it also seems hard to stomach the fact that the universe
cannot manipulate information in a particular way, yet one of those
two (admittedly wishy washy) strange things must happen.

We shall need some notation before discussing the proof. Given a
string α, we write Mα to denote the Turing Machine whose code is α.
Proof Consider the function f : {0, 1}∗ → {0, 1} defined as follows:

f (α) =

1 if Mα(α) = 0

0 else.

No Turing Machine can compute this function, for if there was
some machine that could, then let γ denote the binary encoding of
its code. Then we have that Mγ(γ) = f (γ), but this contradicts the
definition of f , since if f (γ) = 0, then Mγ(γ) cannot be 0, and if
f (γ) = 1, Mγ(γ) cannot be 1.

You may object that the uncomputable f that we found above is
very unnatural, but actually it is not hard to come up with natural
examples that are also impossible to compute using Turing Machines.

For example, we can define the function HALT : {0, 1}∗ → {0, 1}
that takes as input two strings α, x, and then decides whether Mα(x)
halts or runs forever. This seems like a very useful function to com-
pute, but it is also uncomputable.

Theorem 2. HALT is not computable by a Turing Machine.



lecture 5: diagonalization and the incompleteness theorem 2

Proof Suppose it was. Then consider the machine M that on in-
put α first simulates HALT(α, α). If the answer is that Mα(α) halts,
then M simulates Mα(α) and outputs the opposite of its output. If
Mα(α) does not halt, then M outputs 0. Then M computes the un-
computable function f above.

Gödel’s Incompleteness Theorem

Diagonalization was also used to prove Gödel’s famous incomplete-
ness theorem. The theorem is a statement about proof systems. We
sketch a simple proof using Turing machines here.

A proof system is given by a collection of axioms. For example,
here are two axioms about the integers:

1. For any integers a, b, c, a > b and b > c implies that a > c.

2. For any integer a, a + 1 > a.

Given a list of such axioms, a proof is a sequence of statements
that uses the axioms to prove that a statement is true. For example,
to prove that a > b implies that a + 1 > b, we can combine the
assumption a > b with the axiom a + 1 > a and the first axiom, to
prove a + 1 > b.

Prior to Gödel’s work, mathematicians were trying to axiomatize
all of mathematics. They were looking for a set of finite axioms that
could be combined to prove any proof statement. Godel proved that
this a doomed project.

A set of axioms is consistent if the axioms don’t contradict each
other. The set of axioms is complete if every true statement can be
derived from the set of axioms. Godel proved:

Theorem 3. Every consistent finite set of axioms is incomplete.

We give an alternate proof due to Chaitin. Given x ∈ {0, 1}∗, its
Kolmogorov complexity K(x) is the length of the shortest program α

such that Mα(.) = x. Namely it is the length of the shortest program
that outputs x. For each x ∈ {0, 1}∗, N ∈N, let Sx,N be the statement

K(x) > N.

Fact 4. For every N, there is an x for which Sx,N is true.

Proof There are only a finite number of programs of length N, so
for each N, there are only a finite number of x’s such that K(x) ≤ N.
This means that almost all statements Sx,N are true.

To prove Godel’s theorem, suppose there is some finite set of ax-
ioms A. Consider the following program MN :



lecture 5: diagonalization and the incompleteness theorem 3

• Enumerate over all pairs (x, α), where x ∈ {0, 1}∗, α ∈ {0, 1}∗. If α

describes a proof of Sx,N using the axioms A, output x.

If the finite set of axioms were complete, MN would always halt,
since it would find some string x and a proof α proving Sx,N . But
the program MN can be described using just O(log N) bits, and it
outputs a string x for which K(x) > N. For N large enough, this is a
contradiction, and so A must be incomplete.


