
Lecture 9: More NP-complete problems and Oracle
machines
Anup Rao

January 31, 2023

In the last class, we introduced the concept of NP and NP-
completeness, and showed that a few problems are NP-complete. In
this lecture, we begin by giving two more examples of NP-complete
problems.

Hamiltonian Path

Given a directed graph G, a Hamiltonian path is a path that visits
every vertex of the graph exactly once. We define the function

HPATH(G) =

1 if G has a Hamiltonian path

0 otherwise.

Theorem 1. HPATH is NP-complete.

Proof Given a path in the graph, one can check in polynomial time
whether or not it is a Hamiltonian path. Thus HPATH ∈ NP using
the path as a witness. Next we show that you can reduce 3SAT to
HPATH, proving that HPATH is NP-hard.

Suppose the formula has n variables and m clauses. We shall con-
struct a graph on (2m + 2)n + 2 vertices that encodes assignments to
the formulas as follows. We start by constructing a graph that will
contain (2m + 2)n vertices named vi,j, where i ∈ {1, 2, . . . , n} and j ∈.
For every i and 1 ≤ j < j + 1 ≤ k, we have the edges (vi,j, vi,j+1)

and (vi,j+1, vi,j). Thus these vertices can be thought of as arranged
in n rows, where in each row the path can go left or right. For every
1 ≤ i < i + 1 ≤ n, we add the edges

(vi,1, vi+1,1), (vi,1, vi+1,n), (vi,n, vi+1,1), (vi,n, vi+1,1).

Finally we add two special vertices s, t, with edges

(s, v1,1), (s, v1,n), (vn,1, t), (vn,n, t).

By construction, every Hamiltonian path in the graph must start
at s and end at t, and must traverse each row in order. Each row
can be traversed in either left to right or right to left fashion. We
shall imagine that traversing the row left to right corresponds to

lecture 9: more np-complete problems and oracle machines 2

s

t

a

b

c

d

e

(a ∨ b ∨ ¬c)

Figure 1: An example showing how
to generate a directed graph for the
Hamiltonian path problem using a
single clause from the formula.

assigning the i’th variable the value 0, and traversing it the other way
corresponds to assigning the value 1.

Next we add some vertices to encode the constraints given by the
clauses. Without loss of generality we assume that each clause con-
tains a variable at most once (since we can always reduce the formula
to this case). For the j’th clause Cj, we add the vertex cj. For every
variable xi that the clause contains unnegated, we add the edges
(vi,2j, cj), (cj, vi,2j−1). For every variable xj that is contained in the
clause as ¬xj, we add the edges (vi,2j−1, cj), (cj, vi,2j). By construc-
tion, any Hamiltonian path that takes the edge (vi,2j, cj), must take
(cj, vi,2j−1) next, or vi,2j−1 will never be visited. Similarly, any Hamil-
tonian path that takes the edge (vi,2j, cj) must take (cj, vi,2j−1) next.
We claim that the graph has a Hamiltonian path if and only if the
formula is satisfiable.

Indeed, if the formula is satisfiable, then traverse each row in the
direction corresponding to the satisfying assignment. Since each
clause is satisfied by some variable, we can visit the vertex for the

lecture 9: more np-complete problems and oracle machines 3

clause when we traverse the first variable that satisfies it. Conversely,
if there is a Hamiltonian path, then the construction ensures that this
path corresponds to an assignment to the variables, and this path
must visit every clause vertex, which guarantees that each clause
vertex is satisfied by some variable.

Subset Sum

In the subset sum problem, the input is a collection of numbers
a1, . . . , ak, as well as a target number t. The goal is compute whether
or not some subset of the numbers a1, . . . , ak sums to t.

SubSum(a1, . . . , ak, t)

=

1 if there is a subset S ⊆ {1, 2, . . . , n} such that ∑i∈S ai = t,

0 otherwise.

Theorem 2. SubSum is NP-complete.
Example: suppose we are given the

formula (x1 ∨ ¬x2 ∨ x3) ∧ (¬x2 ∨ x3 ∨
x4) ∧ (¬x1,∨¬x3 ∨ ¬x4) ∨ (¬x2,∨¬x3 ∨
x4). There are 4 variabels and 4 clauses,
so the polynomial time reduction
will generate 16 numbers, each with
8-digits, and a target number with
8-digits:

t1 = 10001000

f1 = 10000010

t2 = 01000000

f2 = 01001101

t3 = 00101100

f3 = 00100011

t4 = 00010101

f4 = 00010010

b1 = 00001000

c1 = 00001000

b2 = 00000100

c2 = 00000100

b3 = 00000010

c3 = 00000010

b4 = 00000001

c4 = 00000001

The target number will be:

t = 11113333.

We sketch the proof. SubSum is in NP, since there is an obvious
polynomial time computable verifier for the problem. The witness is
a subset S, and the verifier simply checks that ∑i∈S ai = t, which can
be done in polynomial time.

To show that SubSum is NP-hard, we shall show that

3SAT ≤P SubSum.

We describe the polynomial time reduction next. Given a 3-sat for-
mula φ, our algorithm needs to output numbers a1, . . . , ak and t such
that SubSum(a1, . . . , ak, t) = 1 if and only if φ is satisfiable.

Suppose φ has n variables and m clauses. Then, we will have k =

2n + 2m, and all of the numbers a1, . . . , ak and t will be n + m digit
numbers, written in base 10. Moreover, all the digits of a1, . . . , ak will
be either 0 or 1, and the numbers will be chosen in such a way that
adding any subset of a1, . . . , ak will never produce a carry.

For each variable xi of the formula φ, we shall have two numbers:
ti and fi. The i’th digit of ti and fi will be set to 1 and all of the re-
maining n− 1 digits in the first n digits will be set to 0. Meanwhile,
in the target number t, all of the first n digits will be set to 1. This
choice ensures that choosing any subset of t1, f1, . . . , tn, fn that sums
to t corresponds to choosing either ti or fi to be included in the set,
for each i. In other words, a subset of these numbers that sums to t
corresponds to a truth assignment to the variables x1, . . . , xn.

Next, we need to add more digits to ensure that this truth assign-
ment satisfies all the clauses. For every i, j, if xi occurs in the j’th

lecture 9: more np-complete problems and oracle machines 4

clause, we make the n + j’th digit of ti 1. If ¬xi occurs in the j’th
clause, we make the n + j’th digit of fi 1. All other digits (upto the
n + m’th digit) of ti, fi are set to 0. This choice ensures that if the sub-
set chosen satisfies the j’th clause, then the j’th digit of the sum will
be either 1, 2 or 3. Finally, we add two numbers bj, cj, which are 0 in
all digits, except for the j’th digit. The j’th digit of both numbers is 1.
This ensures that if the j’th clause is satisfied by the assignment, then
one can pick 0, 1 or 2 elements of {bj, cj} to add to the subset, so that
the sum of the j’th digits is 3.

The problem with diagonalization

The only way we know how to prove lower bounds on the run-
ning time of Turing Machines is via diagonalization. Can we hope to
show that P 6= NP by some kind of diagonalization argument? In
this lecture, we discuss an issue that is an obstacle to finding such a
proof.

Definition 3 (Oracle Machines). Given a function O : {0, 1}∗ → {0, 1},
an oracle-machine is a Turing Machine that is allowed to use a special
oracle tape to make queries to O. Each query to O takes unit time.

We can define PO, NPO as functions computable in poly time (resp
nondeterministic poly time) with oracle access to O.

Then we have the following theorem:

Theorem 4. There exists an oracle A such that PA = NPA, and an oracle
B such that PB 6= NPB.

The theorem gives a hint about one of the ways in which it will be
hard to determine whether or not P = NP. Any such proof must not
work in the relativized worlds where access to A, B is permitted. On
the other hand, the kinds of proofs that we have seen using diago-
nalization do relativize—the same argument would work even if the
machines have oracle access to some oracle O.
Proof Let A be the function that on input α, x outputs 1 if and
only if Mα(x) outputs 1 in 2|x| steps. Then PA = EXP, since every
exponential time computation can be simulated with access to A, To simulate a machine Mα, that runs in

time 2nc
, we first create a new machine

M′α that runs Mα on the first n1/c bits
of its input. Then we call the oracle on
Mα′ (y), where y is the input of length
nc with x as the first n1/c bits of y.

and every query to A can be simulated in exponential time. Also
NPA = EXP, since in exponential time we can simulate all queries to
A and simulate all nondeterministic choices.

The second part is more interesting. We shall define an oracle
B : {0, 1}∗ → {0, 1} and a function f ∈ NPB such that f /∈ PB. f is

lecture 9: more np-complete problems and oracle machines 5

defined in terms of B as follows:

f (x) =

1 if there exists y such that |y| = |x| and B(y) = 1,

0 else.

We first show that f ∈ NPB: a non-deterministic machine can
guess y of the same length as x, and make a single query to verify
that B(y) = 1.

To define B, we shall use diagonalization. Let M1, M2, . . . , Mi, . . . ,
be an enumeration of all machines that query B, with the feature
that every machine occurs infinitely often in the sequence. (Such an
enumeration exists if we allow our programming language to have
redundant lines). Our goal is to make sure that the i′th machine fails
to compute the correct value of f (x) in time 2n/10, for some n where
n = |x|. To do this we define the value of B gradually. We define
the value of B in phases. After each phase, we shall have defined the
value of B on a finite set of strings.

In Phase i, let t be so large that the value of B is not yet defined
on each string of length t. Then run the i’th machine Mi(1t) for 2t/10

steps. Each time Mi queries a string of B whose value has not yet
been defined, return 0 and define the value of B on that string to be
0. If Mi halts with value 1, then set B to be 0 on all strings of length
t. If Mi halts with value 0, then pick a string y of length t that Mi(1t)

did not query (note that such a string always exists since there are 2t

binary stings of length t and Mi did not take more than 2t/10 steps),
and set B(y) = 1.

Set the value of B on strings that are not defined by the above
process to be 0.

Suppose for the sake of contradiction that f ∈ PB. Then consider
the machine M that computes f . Since redundant lines of code do
not change the computation of the machine, M actually shows up an
infinite number of times in the enumeration over all machines.

Let i be the index such that the i’th machine in the enumeration is
equivalent to M and t be such that Mi(1t) was used to define B on
strings of length t during the i’th phase, with 2t/10 bigger than the
running time of M on inputs of length t. Because f (1t) 6= M(1t), M
does not compute f .

	Hamiltonian Path
	Subset Sum
	The problem with diagonalization

